Wood has been a plentiful and versatile material utilized by man since earliest times. From it were fashioned many things, including shelters, boats, tools, weapons, and a host of other utilitarian and decorative articles. After such objects were lost, broken or otherwise abandoned, they ordinarily perished quickly from the agents of decay. Most burial conditions, whether on land or under water, are generally unfavorable for the preservation of wood and other organic substances; they are subject to deterioration by chemical processes and by attack of many kinds of bacteria and fungi. Many factors determine the nature and extent of wood degradation. These include the type of wood (soft or hard), the period of burial, and a number of properties of the burial medium, such as moisture content, degree of aeration, pH, temperature and microbiological make-up.

However, wood does survive over long periods of time, under certain favourable conditions. When the environment surrounding the wood is anaerobic (oxygen free), for example, the destructive power of bacteria and fungi is drastically reduced, and wooden artifacts may be preserved for thousands of years. In marine burial, such conditions can be found at depths where temperatures are low and the water holds little dissolved oxygen. On land, the same favourable conditions are characteristic of bogs and other localities where archaeological wet sites are found. Here the pores of the soil, because they are sealed with water, do not permit entrance of oxygen. Once the original oxygen content of the soil layers is gone, the processes of degradation are slowed considerably. It would be wrong, however, to think that degradation ceases altogether. In anaerobic conditions, wood continues to decay due to anaerobic microorganisms and the hydrolytic action of acids in the soil or, in the case of marine burial, the salinity of the water.

Nevertheless, much wood survives sufficiently intact to allow it to be recovered. Since the upsurge of interest in archaeological excavation which took place in 19th-century Britain and Europe, waterlogged wood has appeared with regularity and in quantity. And, much of it is still lying in the basements of museums awaiting treatment. More recently, a wealth of waterlogged wood and other organic materials has been collected from excavations during the past few years at wet sites on the Pacific coast of North America. This amount of waterlogged material will undoubtedly increase, as archaeologists say that more and more wet sites will be found across the entire continent. Moreover, the growing interest in scuba diving during the past few decades or so, and its utilization and acceptance as an exploration tool, has resulted in the discovery of many underwater sites, especially along sea coasts. Locations are today known of literally hundreds of sunken wooden ships, which await the finances and expertise required to raise and conserve them. For all this historically and scientifically irreplaceable material, the conservation profession must find suitable methods of stabilization and preservation.

The Nature of the Problem

Waterlogged wood when excavated may appear fresh and sound or, if badly degraded, may be soft, spongy, and almost black in colour. As wood becomes more and more degraded, its specific gravity and mechanical strength become lower and its permeability and porosity greater. Moreover, each piece of wood is quite unlike any other, and therefore one should expect it to behave quite differently when recovered and treated.

The mechanical strength of a piece of wood is provided mainly by the walls of the wood cells. In waterlogged wood that is badly degraded, these have normally undergone extensive decomposition resulting in a great loss of mechanical strength. Cell walls, made up largely of cellulose, lignin and hemicelluloses, contain multitudes of submicroscopic capillaries. The cellulose chains of the cell walls contain alternating crystalline and amorphous regions. Water enters the amorphous regions and forms hydrogen bonds with the polar terminal groups, such as hydroxyl (OH), on the cellulose chain. Because water cannot enter the more closed crystalline regions, only adsorption takes place. The wood swells as this take-up of water continues, making available more sites, such as interstitial spaces, for adsorption bonding of water to occur. The amount of water adsorbed will reach an upper limiting value, known as the fibre saturation point (normally between 25-30% in fresh wood), which is independent upon humidity and, to a lesser extent, temperature. This water, known as hygroscopic water, will remain in the wood after equilibration has been reached with the atmosphere. Beyond this point, for example when the wood is soaked in water, free water fills the voids until total saturation takes place.

In badly degraded waterlogged wood, after most of the cellulose and hemicellulose have disappeared, the average diameter of the submicroscopic capillaries has increased, resulting in a corresponding decrease in surface area and producing many more voids to be filled with free water.

In waterlogged wood, free water acts first as a bulking agent helping the wood to retain its shape; second, by bonding to the hydroxyl groups of the remaining cellulose, it prevents them from bonding with each other and forcing a shrinkage of the cell wall inwards. This latter function is particularly important since, in waterlogged conditions, hydrolysis of the crystalline regions of the cell wall and the resulting depolymerized cellulose chains make available more polar terminal groups for bonding. Thus, the water is the conserving agent, and the wood will remain reasonably stable as long as it is kept...
Shrinkage of wood

![Graph showing shrinkage of wood](image)

5
d and 6% for shrinkage in the radial direction, and between 8% and 10% for the tangential direction. Shrinkage and cracking in badly deteriorated waterlogged wood will be less well differentiated than in sound wood. Depending upon the nature of the decomposition, waterlogged wood can decompose completely on drying. Hence, when dried in a free state, the wood displays this abnormal behaviour and shrinks, cracks, and warps. Unfortunately, these changes are irreversible. Once degraded wood has dried out, it will not return to its original dimensions. One possible explanation is that the polar groups on adjacent cellulose molecules bond together and are therefore unavailable for future water adsorption. Another equally important cause is the aspiration of pits, which are openings in the cell wall for water transport.

Why do these severe dimensional changes occur? When wood is allowed to dry, its free water is first allowed to evaporate. In sound wood, this will occur without shrinkage until the fibre saturation point is reached and nyctoscopic water begins to disappear. With badly degraded wood, in which the water content can be more than 100% based on the dry wood, the wood displays both of these factors and shrinks well even at high relative humidities as high as 98%. When the structure of the wood is greatly disordered and weakened, the surface tension of the receding water is greater than the strength of the remaining cell walls, and they collapse inwards. Furthermore, as already described, polar groups on the cellulose molecules tend to bond together when water is not present to neutralize the effect. The result is a collapsing of the cell wall, and two factors cause the wood to shrink, crack, twist and warp. We now see that it is this resistance to drying, with the resultant dimensional changes, that makes the conservation of waterlogged wood such a problem.

Approaches to Conservation

The conservation of waterlogged organic materials involves primarily the cleaning and stabilization of objects against further deterioration. Wooden objects, when removed from water, should be washed with water as soon as possible to remove as much of the organic material as possible. This is done to prevent the further decay of the wood and to prevent the growth of mold and other microorganisms. Once the objects have been washed, they should be dried slowly and evenly to prevent cracking and warping.

Second, when a wooden object or wooden-related substance such as bark is unearthed, the archaeologist often sees a rapid darkening of its colour. Although the phenomenon obviously takes place when objects are exposed to the air, the specific cause of it is not fully understood. (Archaeologists digging at the Kwakwana Site on the central British Columbia coast reported that plant fibre specimens were already unusually dark when excavated, indicating that they may not have been buried quickly but were exposed to the atmosphere for some time during waterlogging.) Cleaning, necessary in order to retrieve the original lighter appearance of such materials, is done in a variety of ways with varying degrees of success. Use has been made of mechanical methods (fine water jets or brushing) and chemical agents (acids or sequestering agents).

For many obvious practical and aesthetic reasons, the water from a recovered waterlogged artifact must be removed. The aim of stabilization is to remove the water in such a way as to preserve the structural integrity of the wood, without causing any further damage or degradation.
a way that little or no dimensional changes occur to the wood, and so that the object can be kept at normal museum conditions (typically 65% relative humidity and 20°C temperature). Because wood swells when saturated with water, one must decide whether the object when conserved should have the same size and shape as when newly made or as when found. Experience, I think, shows that we can only attempt to approximate the size and shape when found. Badly deteriorated wood often requires improvement of its mechanical properties, so that it can sustain its own weight and be easily handled. Also, the treatment must leave the wood with an acceptable appearance as regards surface texture and colour.

And, the treatment should, if possible, be reversible. Any materials added to the wood should be easily removable in the event that time shows the added materials are in some way damaging the object.

The stabilization method one chooses to use will depend partly on whether one wishes the treated wood to behave as natural wood and be responsive to temperature and humidity changes, or whether the wood is to be altered to such an extent that it no longer behaves like the natural product. In the latter case, it essentially becomes a synthetic material resembling the original wooden object only in appearance and size.

Five basic approaches to the dimensional stabilization of wood are: (1) the total or partial bulking of the spaces within the cell walls, normally occupied by water, with a solid material which prevents collapse and increases the mechanical strength of the wood; (2) the removal of free water in such a way as to avoid normal drying stresses; (3) the reduction of the permeability of wood to water vapour by use of internal or external coatings; (4) the chemical modification of the structural units of wood to reduce its hygroscopicity; (5) the chemical cross-linking of the wood's structural units to restrict swelling or shrinkage and to increase mechanical strength. Of these alternatives, the first two have been most extensively used and studied. It can be seen also that two or more approaches might be included in a single treatment.

Older Conservation Methods

Little documentation exists which records early attempts to conserve waterlogged wooden objects. Rather, conservators of the past viewed the tendency of wood to shrink and distort as inevitable, and the problem was largely ignored.

In the mid-19th century, the archaeological assistant to King Frederik VII of Denmark, a man named Jørgensen, made reference to the so-called alum method for treating waterlogged wood. This technique, with modifications, was used as the standard waterlogged wood treatment method by the National Museum of Denmark for almost 100 years. Initially, the method involved soaking the wood in a hot (95-100°C) super-saturated solution of alum (potassium aluminium sulphate, K₂[Al₂(SO₄)₃·12H₂O]). The object was boiled in the solution for at least two hours and was then allowed to dry slowly. The aim of this method was to replace the free water in the wood with the solid alum.

Subsequent modifications involved the absorption of linseed oil into the alum-impregnated wood, and then varnishing the dried object to prevent any further intake of moisture. At a later date, the linseed oil/linseed impregnation step was replaced by continuously coating objects with a gelatin “glue” solution. Attempts to use glycerol and glycerol jelly in place of the alum were discouraging, but led to the adoption of an alum-glycerol-water bath for treatment. Later modifications dealt more with finding a suitable surface coating than with replacing the alum. Coatings used included shellac, beeswax, nitrocellulose varnishes, various oils and others.

While many treatments have been successful with the alum method, it is nowadays generally considered unsuitable. Its use was abandoned by the National Museums of Denmark in 1962. The reasons for this are not very difficult to find. Examinations of unsuccessful alum treatments have shown that in many cases the impregnation was incomplete, the alum penetrating only the surface to a depth of a few millimetres. Moreover, alum itself is hygroscopic and dissolves in a small amount of water, so it is easily affected by humidity changes. The addition of glycerol makes this problem worse. Glycerol is significantly hygroscopic, easily taking up moisture in damp surroundings and losing it in dry conditions. Thus the treatment itself encourages dimensional changes and cracking of the wood. The increased absorption of water caused by the glycerol, followed by drying, results in successive stages of solution and crystallization of the waterlogged perishable artifacts must be kept in water, often including a fungicide, until treatment. At the CCI laboratory, wooden objects from the Lachane Site are continuously washed with running water for several months before treatment. This removes some of the extraneous material which adheres to the object after centuries of burial.
alum. This results in increased cracking and often the migration of alum to the surface where it is deposited as an unsightly white powder. Furthermore, glycerol can impart an undesirable sheen to the surface of an object, and often produces a strong odour. It is also said to increase mould growth.

In treating objects by the alum method, one must also carefully control the humidity of the surrounding atmosphere. Artifacts poorly treated with alum have been recovered by dissolving out the alum with water, dehydrating with acetone, replacing the acetone with white spirit, and then, after heating to 60°C, adding paraffin wax until the bath has reached a high concentration. Reported results of this technique have been quite encouraging.

One common fault of early experimenters with waterlogged conservation techniques was their failure to keep adequate records of treatments. Generally, only hints are left as to what was actually used. Treatments which have been recorded include: the use of a solution of gum dammar in benzol for impregnation, followed by surface treatment with a wax-bitumen mixture; the impregnation with a solution of gum dammar in ethyl ether; and the slow drying of fairly sound timbers, accompanied by surface applications of a mixture of linseed oil and kerosene.

Probably the first application of the use of synthetic polymers took place in 1936, when the American scientist A.J. Stannum, after trying several, found phenol formaldehyde resins to be the best. This was followed by several attempts using cellulose nitrate solutions. Perhaps the most important advancement, in light of present treatments, was in 1956 when Stannum introduced the use of carboxylic or polyethylene glycols. This date might conveniently be taken as the starting point of modern approaches to conserving waterlogged materials.

Modern Conservation Approaches

Conservation of an artifact should begin, ideally, the moment it is found in an archaeological site. The object should be kept wet at all times, whether in transport or in storage — at no time should it be allowed to dry out. To prevent condensation, the recovered object should be treated with a biocide. If one knows which treatment method will be used, this can be started while the object is in storage. The example, an object to be treated with polyethylene glycol can be stored in a solution of it.

The practical methods that have been followed over the past decade or so are best discussed within the framework of the five basic approaches listed previously. There are perhaps three major factors which determine the choice and likelihood of success of a conservation method. These are the kind of wood, the degree of decay, and the size of the object. The effects of these parameters will be discussed in the following descriptions of treatments.

[1] **Total or partial bulkling**

In this operation, the water which fills the spaces between the cell walls is replaced by a non-volatile solid which prevents collapse and increases the mechanical strength of the wood. This can be achieved in various ways. Solid material can be introduced as a solution in water or an organic solvent at room temperature or at elevated temperatures. Or, if the melting point of the solid is reasonably low, the molten material can be used directly. In the first case, the water or solvent is allowed to evaporate, leaving the solid behind in the wood.
The ease of penetration depends largely on the size and shape of the molecules and the viscosity and concentration of the liquid. Alternatively, solids can be deposited in the wood by first impregnating it with a liquid monomer or resinoid, which is then polymerised or condensed with high-energy gamma radiation, heat or a catalyst.

A number of methods, which fall into a miscellaneous category, have been tried with varying results. For example, a mixture of stearyl and cetetyl alcohols obtained from spermaceti oil, known as Cetanol S.A., has been used. After initial dehydration in ethanol, the wood was kept in a molten bath (60°C) of Cetanol for several days. On removal, the wood twisted and developed cracks. In another experiment, a similar substance derived from spermaceti oil also met with little success. The wood was immersed in molten Jasperol (sulphonated fatty alcohols) for several days, but had an unacceptable soft, waxy appearance after treatment.

Impregnation of wood using electrophoretic techniques has been done in Poland. The piece of wood to be treated was suspended between metal electrodes across which a current was passed. The potential drop between the electrodes encouraged liquids to migrate towards the negative electrode and, in so doing, impregnate the wood with different inorganic materials. These included single solutions and mixtures of water glass (Na₂O·SilO₂), calcium chloride (CaCl₂), acetic acid (CH₃COOH), phosphoric acid (H₃PO₄) and others. It was also found that the method worked equally well when the solution was replaced with sand saturated with the solution. This enabled in situ treatments at an archaeological site to be carried out. Unfortunately, the promising results reported here have not yet been reproduced elsewhere.

Hardening and structural stabilization of wood has been reported following treatment in aqueous solutions of sodium bichromate (Na₂Cr₂O₇) and chromium trioxide (CrO₃), which after chemical modification within the wood are deposited as chromium compounds (Cr₂O₃·Cr₂O₃) and calcium compounds (Ca₂CrO₄). As a final step, the wood is given a protective coating by immersion in linseed oil. A recent paper describes the successful use of tetraethyl orthosilicate for preserving waterlogged archaeological material. Two quite common substances, sucrose and sodium chloride, have been shown from preliminary studies to have greater shrinkage-restraining effects than polyethylene glycol.

Finally, concluding this list of miscellaneous methods, is the use of water soluble organic materials such as methyl cellulose, polyvinyl acetate and polybutyl methacrylate. In general, these have not been successful. The degree of penetration is not good and gives little protection against shrinkage and warping. However, there is some prevention of surface checking.

A method that has proved over the years to be excellent for the treatment of small timbers is the alcohol-ether-dammar resin method. Derived from the work of B. Brorson Christensen in Copenhagen, this method involves the slow dehydration of the wood using successive changes of ethanol. This is accomplished over a period of several weeks. When dehydration is completed, the alcohol is exchanged for ethyl ether. After being in ethyl ether for approximately two weeks, the wood is placed in a bath of ethyl ether saturated with dammar resin for a further two or three weeks before being allowed to dry. The treated wood usually has a light brown colour and a generally natural appearance. It usually shows only a slight tendency to crack or warp. Occasionally a mixture of dammar and resin (cellophane) is used, and results with this are good as well.

Unfortunately, because ethyl ether is extremely flammable and has strong narcotic effects, it is not suitable for use on a large scale without complicated and expensive facilities.

The polyethylene glycol method is, at the present time, considered to be the most suitable way of stabilizing waterlogged wood. Polyethylene glycols (carbowaxes) are polymers of ethylene oxide with the general formula HOCH₂(CH₂O)nCH₃-OH, where n represents the average number of oxyethylene groups. All polyethylene glycols, except polyethylene glycol 1500 (recently redesignated 540), are designated by a number that approximates the average molecular weight. From the point of view of waterlogged wood, the most useful property of these polymers is that they are all soluble in water and also in many organic solvents. With increasing molecular weight, water solubility, vapour pressure and hygroscopicity decrease, whereas freezing or melting
range and viscosity increase. In appearance, they range from clear viscous liquids (lower molecular weights 200-600) to white, waxy solids (higher molecular weights 1000-6000).

Ease of penetration into the wood depends on the size and shape of the penetrating molecules, which increase with increasing molecular weight. In polyethylene glycol 4000, the size of the molecule is approximately 250 angstroms when it is in stretched form. If the molecule is in coiled form, it could be too large to pass through the pit pores of the wood, and hence penetration would be greatly reduced. More badly degraded wood allows use of higher molecular weight polymers. As a general rule, the less badly degraded is the wood, the lower the molecular weight polyethylene glycol must be used. This is particularly true when treating objects fashioned from the heartwood of oak. In the living tree, movement of water causes in the heartwood and tissues are deposited which prevent decay. However, it is extremely difficult. Eventually, vessels become blocked by growths called tyloses and treated vessels block movement of polyethylene glycols and probably catalysing the depolymerization of the polymers.

There have been two main approaches to the treatment of wood with polyethylene glycols. One involves spraying the wood constantly with a polyethylene glycol solution. To treat parts of the hull of the Swedish warship Vasa, which was raised from Stockholm harbour in 1961, a 35% solution of the 4000 grade was sprayed onto the oak timbers which were being slowly dried at a relative humidity of around 70%. A mean concentration of about 80% polymer was achieved, the surface concentration being considerably higher. If one disregards, for the moment, the question of how much impregnation actually takes place, the main drawback to this process is the length of time the treatment takes.

The treatment can be speeded up considerably by placing the wood in a heated bath of polyethylene glycol solution. A typical treatment would be to place the wood in a low concentration of the polymer (typically 10%) which is maintained at 60°C. The concentration of the polymer is then gradually increased on a daily basis by additions of the pure material. This can be continued until a sufficiently high concentration of polymer has been reached. Some experimental work suggests that the treatment is probably completed when a concentration of 70-80% has been reached. During this process, the original volume of water is maintained. Finally, the wood is cleaned of excess polymer and allowed to dry slowly.

Tanks for this process have been fabricated from stainless steel, heavy-duty polyethylene and fiberglass. Copper, zinc, iron and aluminum are not suitable since they can cause depolymerization of the polyethylene glycol.

Impregnation of waterlogged wood with materials such as polyethylene glycol is largely a process of diffusion. That is, water passes out of the wood while the polymer diffuses into it. The rate of diffusion is expressed by the diffusion constant, which is inversely proportional to the molecular weight of the compound. Thus we can say that the time taken for a particular substance to diffuse will be proportional to its molecular weight. Polyethylene glycol 1000 will diffuse approximately 18 times faster than ethanol, which has a molecular weight of 55. Dilute
Chemical analysis for lignin and cellulose provides an indication of how badly degraded a piece of wood is. Here, a CCI scientist tests for the amount of lignin, which can remain in wood after years of burial, simply by removing the cellulose, easily hydrolyzed by acids, and weighing what is left.

Solutions will have a proportionately higher diffusion constant than concentrated solutions, and it is for this reason that treatment is commenced at low concentrations where the diffusion constant of the solution is comparable to that of water. If too high a concentration is used at the beginning, partial dehydration of the wood — and irreparable damage — can occur while the wood is in the treatment bath. This happens when water diffuses out of the wood at a much faster rate than the concentrated polymer solution can replace it. This often leads to consolidation of the surface zones only, and not the interior of the object. High temperatures seem to make this problem worse, especially with sound oak. Similarly, overtreatment, that is, continuation of the treatment until the solution has a high concentration, is also damaging and uneconomic. This tendency results in the wood having a very low water content (less than 10%), which is far less than the ultimate equilibrium water content after treatment (20–30%) when the object is maintained at ambient conditions.

In summary, from the accumulated data of treatments with polyethylene glycols, we can say that the condition of the wood dictates which grade of polyethylene glycol can be used. Badly degraded material can be treated with high molecular weight grades, whereas reasonably sound timbers can only be treated with lower molecular weight grades. A molecular weight of around 3000 has been mentioned as the maximum size which will penetrate reasonably sound wood. The lower molecular weight grades are unfortunately quite hygroscopic, and objects treated with these grades are unsuitable for handling and require carefully controlled environments for display.

Although polyethylene glycols are extensively used, their suitability for other than small objects is being questioned. It appears that the size of an object could be the determining factor in whether a polyethylene glycol treatment is successful or not. In large timbers, penetration appears to be confined in many cases to the external edges. Unfortunately, in the majority of examples, a high degree of consolidation appears necessary for lasting stabilization.

The acetone-resin method was developed specifically for the treatment of large, sound, waterlogged oak timbers, which have proved extremely difficult to conserve using polyethylene glycol. The wood is given an initial treatment in hydrochloric acid (3%) in an attempt to remove extraneous deposits and to restore the usually darkened oak to its original lighter colour. After the excess acid has been removed by washing in water, the wood is dehydrated in several changes of acetone. Then rosin (colophony) is added to the bath and the temperature raised to 51°C, the concentration of rosin at this temperature reaching 67%. After treatment, the excess rosin is removed with acetone swabs or fumes.

Dimensional stability of the oak after the acetone-resin treatment is greatly improved, and there is little or no cracking or splitting. The object is lighter in colour (although not as natural a colour as obtained with the alcohol-ether-resin method), and has a weight approximately the same as before being waterlogged. Polyethylene glycols, on the other hand, leave the wood dark in colour and quite heavy. Preliminary studies using the scanning electron microscope show that, in small objects, the rosin penetrates all of the cells to give good stabilization and strength.

Whether or not the acetone-resin method can be successfully used for very large timbers is not yet certain. Of obvious concern is the highly flammable nature of acetone. Again, facilities meeting proper safety requirements would be expensive to construct and in many places would require specially designed fire-proof and explosion-proof buildings.

A method involving the in situ polymerization of monomers has been a subject of research in recent years. (In situ is not used here in any archaeological sense, but refers to what is done to the monomer while it is in the wood.) The waterlogged wood is stabilized by impregnating it with monomers and then polymerizing in situ, either by high energy gamma radiation, by the use of chemical catalysts or by heat. Polymeric systems which have been studied, either for conservation or industrial applications, include styrene/divinyl benzene, vinyl...
chloride, vinyl acetate/styrene, methyl methacrylate,
butyl methacrylate, and 2-hydroxyethyl methacrylate. In
a similar way, oligomers of methyl methacrylate and
dimethyl siloxane have been used.

Some of the advantages gained by using such a treatment
derive from the fact that monomers have low
molecular weights, hence the diffusion coefficients of the
pure liquid or its solutions are similar to that of water and
other solvents. This means that some of the problems
encountered in the polylethylene glycol method are
removed, with the small size of a monomer makes
penetration into the wood easier.

Results of in situ polymerization of monomers to date
are quite promising, and usually show greatly improved
dimensional stability of the wood with little shrinkage. In
some cases, however, the wood has been left with an
unacceptable, high gloss. With gamma ray polymeriza-
tion, the immediate drawback is the very expensive
requirement for irradiation facilities. And, the fact that
some monomers are not water soluble means that the
wood first has to be dehydrated. This could be a problem
with large timbers when volumes of solvents would have
to be used.

Impregnation with synthetic resins involves the use of
low-molecular-weight resins, such as urea-formaldehyde,
melamine-formaldehyde (Arigal-C) and
phenol-formaldehyde. The condensation products
formed have been shown to reduce the shrinkage and
increase the strength of the wood. The Arigal-C method,
however, has not been the best known, often causes
the treated wood to have a whirled, bright appearance
and does not always prevent splitting and cracking.

A recent and rather novel treatment involves soaking
the wood in a sugar solution, then chemically modifying
the sugar to produce an aqueous resin solution. The
addition of a catalyst, followed by heat curing, results in
the formation of a water insoluble, inextricable material
within the wood. The results are reportedly good.

Resin systems have been used somewhat successfully
in treating waterlogged wood. However, the short time
required for condensation to occur is not suitable for
large timbers where impregnation would be slower. This
problem could disappear with the continuing industrial
advances being made in the area of resin systems.

[2] Removal of free water

Removing free water from wood must be accomplished
in such a way that drying stresses are avoided. The
damage caused to wood by the receding water surface
and drying is due to the high surface tension of water.
Attempts have been made to prevent this damage by
replacing the water with a solvent with a lower surface
tension and then allowing the solvent to evaporate. Ethyl
ether was first tried and, with very small objects, was
sometimes successful. However, shrinkage did occur and
the method was altered to include a consolidating agent
—the alcohol-ether-resin method. A much more recent
method using commercially available de-watering fluids
was reported to be successful, but an evaluation by other
workers suggested that de-watering fluids did not prevent
shrinkage and deformation, and that any success had
been due to the inherent soundness of the wood.

An alternative method is to replace the water with a
liquid which, when frozen, can be removed by sublima-
tion under vacuum. The essential feature is that sublima-
tion takes place without a liquid phase being present.
Trimethyl carbinitol was the liquid of choice by several
laboratories, but the results were not promising.

Cracking and checking appeared on many artifacts so
treated.

Freeze-drying, a technique much used in the food
industry, is now being used more and more in the
conservation of waterlogged wood. In the freeze-drying
method, no initial replacement of water is necessary. The
water is simply sublimed away under vacuum. This
requires that the vapour pressure of the water above the
ice surface is less than that at the ice surface, a condition
that can be achieved by the use of vacuum and a
condenser. To collect the sublimed water vapour, the
condenser must be considerably colder than the wood
itself. To obtain a practical rate of sublimation, it is also
necessary to heat the wood during the treatment. This is
necessary to replace the latent heat of sublimation used in
the conversion of solid ice to water vapour.

Initial freeze-drying experiments were reasonably
successful, although the wood still suffered some
shrinkage and cracking. This is due to the strain caused
by rapid freezing of the wood (water undergoes a 12%
volume increase on freezing) and the damage caused by
the absorption of atmospheric moisture after the
treatment. These problems were removed to a great
extent by soaking the wood before freeze-drying in a 30%
solution of polyethylene glycol 400. A 10% solution
undergoes a volume increase on freezing less than half
that of water. This, combined with the solution’s low
volatil pressure and low surface tension, greatly reduces
damage. Results have generally been good, and work
assessing the efficacy of this method for large timbers is
in progress.

[3] Internal or external coatings

The use of surface coatings is aimed at reducing the
permeability of wood to water vapour. Alternatively,
partially coating the inner surfaces with so-called water
repellents, such as waxes, has been tried in attempts to
achieve the same effect. A wide variety of materials, from
linseed oil to epoxy resins, have been used, but the results
are generally unsatisfactory. The rates of swelling and
shrinkage are reduced, but in the end the amount is not
much altered. No dimensional stabilization is achieved.

[4] Reduction of the natural hygroscopicity
of wood

Attempts have been made to reduce hygroscopicity by
chemically modifying the cellulose and lignin molecules.
Acetylation has shown some success in industrial appli-
cations, although some of the success is thought to be due to
bulking effects caused by interaction with the cell walls.
Similar experiments done in the C.G.I.'s Conservation
Processes Research laboratory on badly degraded wood
were completely unsuccessful, probably because of
damage caused to the wood structure by the acetylating
agent. It appears likely that this method will not be
successful until new and less powerful treating agents are
found. One alternative might be to reduce the hygrosco-
opic nature of the impregnating agents (for example,
polyethylene glycol 400) before treatment. This has
appeared been tried with isocyanates.

[5] Chemical cross-linking

In this method, it is assumed that chemically linking
the cellulose chains will prevent swelling due to moisture
increases and will, therefore, confer dimensional stability
to the wood. Formaldehyde, ethylene oxide and other
materials have been tried, but with only limited success.
even in sound wood. This, as in the hygroscopicity reduction experiments, is due to the extreme conditions required for the reactions to occur.

The Challenge of Waterlogged Materials

For the past few years, the status of conservation research has been hovering somewhere between that of a “kitchen art”, complete with a book of established recipes, and that of a legitimate science. It is now becoming more and more apparent that to hope for any lasting success with conservation problems such as waterlogged wood, we must seek a far deeper understanding of the materials themselves as well as of the physical and chemical processes involved in their deterioration and preservation.

While much of the fog surrounding many conservation difficulties has been cleared away by research so far, imposing problems have yet to be overcome. For example, while there is no great difficulty involved in successfully treating small artifacts, quite formidable problems arise when one is required to treat very large...