LINNET: THE HISTORY AND ARCHAEOLOGY
OF A BRIG FROM THE WAR OF 1812

A Thesis

by

ERIKA LEA WASHBURN

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

May 1998

Major Subject: Anthropology
LINNET: THE HISTORY AND ARCHAEOLOGY
OF A BRIG FROM THE WAR OF 1812

A Thesis
by
ERIKA LEA WASHBURN

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of
MASTER OF ARTS

Approved as to style and content by:

Kevin P. Crisman
(Chair of Committee)

Frederick M. Hocker
(Member)

James C. Bradford
(Member)

Vaughn M. Bryant, Jr.
(Head of Department)

May 1998

Major Subject: Anthropology
ABSTRACT

Linnet: The History and Archaeology of a Brig from the War of 1812. (May 1998)

Erika Lea Washburn, B.A., Boston University

Chair of Advisory Committee: Dr. Kevin J. Crisman

In the summer of 1995, the hull of the War of 1812 brig Linnet was excavated from the banks of the Poulney River near Whitehall, New York. Linnet is the only known existing Royal Navy hull from the British squadron on Lake Champlain. This brig played an active, albeit relatively short, role in the War of 1812, participating in the final naval engagement on the lake, the Battle of Plattsburgh Bay. The British lost this battle at a crucial point in the war. Afterwards, Linnet became property of the U.S. Navy and was placed in ordinary with the rest of the squadron in the Poulney River. This thesis is a report of the archaeological and historical investigation of Linnet.

The War of 1812 was characterized by the struggle over political and economic power, short-sightedness and miscommunication. These factors are examined in broad terms, to provide a background for the conflict and a clear picture of the setting in which Linnet was created. British North America and Lower (or eastern) Canada are initially discussed, followed by greater focus on British naval activity within the Lake Champlain theater. Key figures in the Royal Navy are introduced, followed by an examination of the naval establishment at Isle aux Noix, where Linnet was built. Certain people and policies became critical in the struggle for naval superiority on the lake. These individuals and
their efforts led to orders for construction of *Linnet*, signaling the beginning of a shipbuilding race on Lake Champlain. The struggle for control of the lake would end at Plattsburgh Bay on September 11, 1814.

This thesis examines the deterioration of the lake's naval fleet, its abandonment by the U.S. Navy in 1825 and the 1949 salvage attempt on the hull of *Linnet*, which had a significant impact on the 1995 archaeological excavation. The excavation is discussed including the methodology and data recovered. Hull measurements, construction details, a hypothetical lines sketch and the small finds are included.
In Loving Memory

Margaret Elaine Washburn, 1950 - 1995

and

Kermit V. Washburn, 1907 - 1996
ACKNOWLEDGEMENTS

I have many people to thank, at Texas A&M and abroad, for their assistance in the preparation of this thesis. First thanks go to my chairman, Professor Kevin Crisman, for giving me the opportunity to do this project, his generous support and advice over the years, contagious enthusiasm with the subject matter, friendship, and for allowing me to (practically) live in his lab. I also thank Professor Fred Hocker, a friend and committee member, for his encouragement, advice, patience and perspective during the last few years, as well as for providing me with a place to write, rent free. And thanks to my third committee member, Professor James Bradford, who made me think about history in new ways.

The field work would never have been accomplished without the support of Texas A&M, the University of Vermont, the Institute of Nautical Archaeology, Vermont Division for Historic Preservation, the Navy Legacy Program and the Lake Champlain Maritime Museum. A big thanks to Mr. Arthur Cohn, for his support and advice, and the staff of the Maritime Museum, especially Erick Tichonuk who drew the artifacts. I also want to thank Bob Neyland, who administered the Navy Legacy Grant, Craig Williams from the New York State Archives, Bruce Moseley and Chris Fox from Fort Ticonderoga, Howard Bartholomew at the Whitehall Public Library, Herman C. Brown of Grand Isle and the staff of SUNY Plattsburgh’s Feinberg Library.

I extend a special thank you to the L.T. Jordan Institute for their support of my
research abroad during the summer of 1997. Without their backing, I would not have been able to do any research in Great Britain. All of the staff members of the Public Record Office in Kew, especially Mr. Paul Sturm, were extremely helpful and never failed to come through for me and find elusive material. Mr. Knight and Jillian Hutchinson of the National Maritime Museum in Greenwich took time out of their busy schedules to show me around which I also greatly appreciated.

In Canada, the staff of the National Archives and National Library were of invaluable assistance, specifically Louise Bertrand, Timothy Dube and Jim Burant. Also thanks to a fellow nautical student, Charles Moore of Ottawa, who put me up at his home during my stay. Maurice Smith of the Maritime Museum of the Great Lakes, Jonathon Moore, J. Ross McKenzie of the Royal Military College of Canada, the Parcs Canada staff at Fort Lennox, and Parcs Canada archaeologist Gisele Piedalue and historian Normand LaFreniere were all very helpful in offering suggestions, answering questions and providing me with information.

To my family and all my friends at Texas A&M - thanks for your support, encouragement and entertainment during the last few years. It’s been fun. Finally, I want to thank the members of the 1995 Lake Champlain Nautical Archaeology Field School who got this whole project off to a good start. These include my colleagues and friends Eric Emery, Erich Heinold, Pierre Larocque, Rob Wilczynski, Scott MacLaughlin, Scott Padeni, Cheryl Quinn, Steve Butler and Steve Bilicki. (The Linnet team ruled!)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>THE STATE OF AFFAIRS IN BRITISH NORTH AMERICA</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>ISLE AUX NOIX AND THE LAKE CHAMPLAIN THEATER</td>
<td>13</td>
</tr>
<tr>
<td>IV</td>
<td>THE BATTLE OF PLATTSBURGH BAY</td>
<td>35</td>
</tr>
<tr>
<td>V</td>
<td>AFTERMATH: PEACE AND A COURT MARTIAL</td>
<td>41</td>
</tr>
<tr>
<td>VI</td>
<td>FATE OF THE FLEET</td>
<td>46</td>
</tr>
<tr>
<td>VII</td>
<td>WHITEHALL, NEW YORK, 1949</td>
<td>49</td>
</tr>
<tr>
<td>VIII</td>
<td>ARCHAEOLOGY</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Objectives and Methodology</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Summary of Field Work</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Hull Condition and Construction</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Reconstruction of Linnet: A Hypothetical Lines Sketch</td>
<td>66</td>
</tr>
<tr>
<td>IX</td>
<td>LINNETS SMALL FINDS</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Study Assemblage Defined</td>
<td>72</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Ordnance</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Dress</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>X CONCLUSION</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>NOTES</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>VITA</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artifacts Recovered in 1995 Field Season</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>Study Groups: Fasteners, Ordnance and Dress</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Fasteners</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Ordnance</td>
<td>80</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

On 18 August 1815, Daniel Pring, an officer in the Royal Navy and late commander of H.M. Brig *Linnet*, found himself aboard H.M.S. *Gladiator* in Portsmouth Harbour, England. He was attending his court martial.¹ The war between the United States and Great Britain had been settled by the Treaty of Ghent on 24 December 1814, just three months after the engagement responsible for the court martial inquiry.² This particular engagement, the Battle of Plattsburgh Bay, was a major turning point in the conflict, and as such, a critical factor leading to the signing of the treaty. Captain Pring had commanded *Linnet*, and, up until a few months before the battle, the entire British flotilla on Lake Champlain. Pring’s testimony and that of his fellow officers would be examined again and again by future historians attempting to understand what went wrong for the British on that fateful day of 11 September 1814.

In order to place the loss at Plattsburgh Bay and *Linnet*’s story in context, the causes of the war must first be reviewed, followed by a brief examination of the political, economic and military situation in British North America immediately prior to the war.

On 1 June 1812, President James Madison sent a message to Congress

The style and format of this thesis follow those of *American Neptune*.
recommending the declaration of war against Great Britain. The reasons cited included British impressment of American seamen, neutral rights at sea and concerns over the control of the frontiers to the north and west. The vote in Congress, hinting at the degree of division within the country, was 19 to 13 in the Senate and 79 to 49 in the House.³ Outspoken and influential Republicans (known as the War Hawks), led by Henry Clay and John C. Calhoun, were especially active in promoting war and persuaded enough members in Congress to vote in favor of it. The War Hawks and others favoring war believed that conquest of British North America would end Indian resistance on the western frontier and permit the expansion of the United States into the interior of North America. Although the Republican party was generally at odds with the Federalists over war, their members were not unified in opinion as to the proper course of action. Republicans were united only in the fear that “submission would threaten their control of the nation’s political life and draw odium down upon republican government.”⁴ At a time when the proof of republicanism was believed to rest upon actions and deeds, Republicans - War Hawks or not - had no choice but to press for war.⁵ The Congress of the United States declared war on Great Britain on 18 June 1812.

Within the United States, participation in the war reflected regional differences of opinion. The Federalist-dominated New England states were greatly divided politically and socially, both from the western and southern states and among themselves, due to complex social and economic factors, the most prominent being that
their economies were inextricably linked to trade with their neighbors in Canada. The people of Vermont, for example, decided early on to continue trading over the border, yet that state would eventually furnish more men to the regular army than all but the four most populous states. In New York, opinion was equally divided between shipping and commercial interests which opposed war, and the farmers and frontier families who favored it. The war was never looked upon in completely favorable terms, and the thoughts of one resident in northern New York serve to exemplify popular opinion:

There are too many men interested in the prosecution of the war, too much French influence in our councils, and too many passions and prejudices entertained against England, among those who at present direct the political whirlwind to hope for an immediate calm - The storm must be permitted to spend its fury and to waste its energy, before we can expect the beams of peace again to dawn upon our country - In short, it appears to me, that the election of a new set of men to office, can alone effect a safe and honorable peace with England. But democracy will not or cannot see what is for the best good of the country; for this war, like all the rest of their measures, has been commenced in folly, directed in weakness, and will end in ruin.

The divisions in Canada between those favoring or opposing war mirrored the divisions in the northern United States - both for economic reasons, as well as simple logistics. In the year 1812, the population of Canada totaled approximately a half million people stretched thinly along a border 1,300 miles in length. Many of these residents were recent immigrants from the United States with questionable loyalty. The population of the United States, in comparison, totaled nearly eight million, with major centers of population in the north providing easy access to British North
America, if offensive actions were desired.11

The extent of smuggling during the war is another example of the stubborn resourcefulness of the inhabitants on both sides of the border, as well as their economic and social interdependencies. An uncontrolled factor in the war, smuggling was responsible for thwarting many a military plan. In the Lake Champlain theater, smuggling directly affected the British ability at Isle-aux-Noix to complete warship construction.12 In fact, British and American forces never came close to controlling this activity, even though anti-smuggling legislation and patrols were established on both sides. In many cases, the smugglers not only knew the men ordered to stop them, but were very well armed themselves.13

In addition to the lack of unified popular support for the war, the economic and social interdependencies and the smuggling ventures, another common factor between British North America and the United States was the lack of preparedness for war. This included not only a deficiency of manpower, arms and supplies, but also, in a time when waterways were the highways and lifelines of a nation, a lack of warships on the northern lakes. At the outbreak of war, the American navy on the northern lakes consisted of only two deteriorated gunboats on Lake Champlain and the 16-gun brig \textit{Oneida} on Lake Ontario.14 On Lake Champlain the British possessed the rotted schooner \textit{Royal Edward}, three gunboats hauled up from the St. Lawrence River and some batteaux armed with three pounder cannon.15 On the Great Lakes they fared slightly better with a Provincial Marine corvette, a brig and five schooners, although
none were well-manned or maintained.¹⁶

Throughout most of the War of 1812, England adopted a defensive policy against the United States, while His Majesty’s Government waged a full scale war in Europe against Napoleon. Action in the European theater severely taxed the British purse and demanded the best men and equipment, while the war with the United States was seen initially as more of an annoyance. Comparisons of the Royal Navy Expense Estimates from 1812 to 1814 provide a numerative example of the funding differences for the British military. In 1812 and 1813, the only funds for Royal Navy dockyards in North America were designated for officers and administrative personnel in Nova Scotia (£810) and in Halifax (£3,695). These figures pale in comparison to a mid-sized domestic yard, Woolwich, which obtained £29,889. As a matter of fact, for 1812 and 1813, every other overseas dockyard, with the exceptions of Bermuda and Malta, received more funds than all the North American yards combined.¹⁷ In 1814 the Navy budget reflects a change, with Admiralty orders assigning £3,580 to Quebec and Kingston to be distributed to shipwrights, sailmakers, smiths and clerks. The total funding for officers and personnel in North America at this point was still only 0.9% of the total Navy administrative budget.¹⁸ Until Napoleon was well under control in April of 1814 the British government could offer little more than words of encouragement to their leaders in North America.

In addition to a lack of economic, political and logistical support from England, several factors in Canada affected the overall war picture. These include the economic
and political state of affairs in Upper (western) and Lower (eastern) Canada, divisions between the Francophones and Anglophones in Quebec, interests and activities of the Native Americans, influences of fur traders and mercantile groups, lack of provincial manpower and supplies, and the interactions between the major leaders at that time.
CHAPTER II

THE STATE OF AFFAIRS IN BRITISH NORTH AMERICA

My Lord, Quebec 29 June 1812
I have the honour to Transmit to your Lordship the Act of the Congress of the United States approved by the President by which war has been declared on Great Britain and which has this instant reached me through the medium of the Public prints.¹⁹

News of the American declaration of war did not reach the government in Quebec until eleven days after its passage. The man in charge of Canada who quickly drafted the above letter to his superior was Sir George Prevost, an important figure in the War of 1812 and in the Battle of Plattsburgh Bay. Born in 1767, Sir George was the eldest son of General Augustine Prevost. He entered the British Army early in the 1780's, became a major in the Royal Americans in 1790, and served in the West Indies. In 1798, he was appointed military governor of St Lucia, became its civil governor in 1801, and subsequently was appointed Governor of Dominica. In Dominica, Prevost succeeded in developing the good will of the French population, a deed which earned him a baronetcy and ultimately became a factor in his appointment to Canada. In 1808, Prevost became Lieutenant-Governor of Nova Scotia, with the rank of lieutenant general and, in 1811, he was transferred to Quebec as administrator of the government in Lower Canada.²⁰ Later that year he became the leader of the British forces in all of Canada with the impressive title, “His Excellency Sir George Prevost, alone, Captain General and Governor in and over the Provinces of Lower Canada, Upper Canada,
Nova Scotia, New Brunswick and their several Dependencies, Vice Admiral of the
Same, Lieutenant General and Commander of All His Majesty’s Forces, in the said
Provinces of Lower Canada and Upper Canada, Nova Scotia and New Brunswick and
their Several Dependencies and in the Islands of Newfoundland, Prince Edward, Cape
Breton and Bermuda.”

The War of 1812, specifically battles at Sackett’s Harbor, New York, and
Plattsburgh Bay, Lake Champlain, was to be Sir George’s ruin. Various accounts have
called him overcautious and vacillating, “a politician rather than a soldier, irresolute
and down-hearted, with no confidence in himself and no military skill,” and more
recently, “fussy incompetent, timid and lacking foresight.” Despite his many
accomplishments as Governor General of Canada, he went down in history more as a
coward and Francophile than as the leader who, under extreme conditions and limited
resources, managed to hold the provinces together for the British Empire. At least one
modern historian concedes that “if anyone deserves the title ‘Savior of Canada,’
Prevost is a prime candidate.”

Prevost’s position as Governor General was more of a juggling act and
administrator’s nightmare than anything else. He was not only responsible for the
military state of affairs, but also for finances, the clergy, legislative matters, reports on
imports and exports, Indian affairs, and memorials and pensions for military personnel
among other things. These responsibilities challenged his ability to prosecute the war.
In addition to this, the British government in London, administering Canada through
the Colonial Office, avoided dealing with the North American situation and preferred to handle only non-martial matters it could resolve, devoting its time and effort to the raging European war. Through the fall of 1812, much of Prevost's correspondence to the Colonial Office dealt not with the war against America, but instead, concerned a bastard child murder case in Lower Canada.

Another difficulty with which Prevost had to struggle during the War of 1812 was the economy of the provinces. In the middle of July, 1812, Prevost asked the Provincial Parliament of the Canadas to pass a bill for paper currency, citing that in Upper Canada alone £4,000 were needed to pay the militia. On 30 July he wrote to the British Prime Minister, the Earl of Liverpool, describing his concern over the financial situation:

My Lord,
I have the honor to represent to your Lordship the exhausted state of the Military Chest of the Canadas and the impossibility of replenishing it but from England, exposes His Majesty's Service to Serious difficulties, which will not altogether be removed by the operation of the Army Bill Law which has passed the House of Assembly and is now with the Legislative Council, - I cannot doubt its affording much relief to our embarrassed finances, altho I shall have to contend in enforcing it, with the deep rooted prejudices of Canadians against a paper Money.

The paper money was issued as legal tender, paid interest upon by the province and backed by the British government. Although not enthusiastically received at first, by September of 1812, £150,000 had been issued. By mid-October, Prevost wrote to the Secretary of State for the Colonial Office, Earl Bathurst, of success, calling the bill "a powerful link in the chain which bends the Canadas to Great Britain." This bill was
so successful that by the end of the war £1,300,000 were in circulation.

Indian involvement was another important aspect of the war effort. The British knew that having the support of the Indians would guarantee additional, much-needed warriors and earn Indian loyalty to the Crown. This was an extremely powerful force for the British since the Americans were terrified of how the Indians fought and behaved when not firmly controlled. Throughout the war, Prevost sent the British government numerous requisitions for presents which he used as payment for Indian loyalty and assistance.

When news of the war reached Prevost, he knew that he would not be able to rely on regular troops or reinforcements from Great Britain, and that he would have to depend primarily on provincial troops to defend Canada. Seeking to expand his forces, he was assisted in obtaining the large numbers of recruits needed by two things: the clergy and the attitude of the American government. The Catholic bishop and clergy generated popular support for the British cause and solicited help from the French-speaking population in Lower Canada. These efforts were so successful that by mid-April 1812, Prevost was able to organize a corps of light infantry - the Canadian Voltigeurs - to be used in the defense of Lower Canada. Prevost’s recruiting was aided by the actions of the Americans. In March of 1812 he wrote:

My endeavors to rouse the Canadians from their lethargy, and to inspire them with loyalty towards the Crown protecting them, receives considerable assistance from the arrogant declarations made by Congress respecting the easy conquest of their country - I have expectations their wounded pride will induce them to confide to my management a considerable Militia Force to repel any attempts to invade Canada; this Force is to be the Elite of the Militia, which I am to be empowered to
assemble as early as the season will admit.31

By the summer of 1812, the militia of Lower Canada alone totaled 60,000
men.32 Although initially apprehensive about the character and ability of the Canadian
militia, calling them “a mere posse, ill armed, and without discipline,” Prevost counted
on their willingness to defend their own land as one of the defensive policy’s strongest
aspects.33

In a report to the Earl of Liverpool on 18 May 1812, Prevost described the
military positions of all of His Majesty’s Forces in the provinces (Appendix A, Figure
1).34 For Lower Canada, he was mainly concerned with the commercial center of
Montreal and the administrative center of Quebec. For the security of Montreal, he
wanted to maintain “an impenetrable line on the South Shore, extending from La
Prairie to Chambly, with a sufficient Flotilla to command the Rivers St. Lawrence and
the Richelieu.”35 The garrison at Montreal consisted of a Brigade of Light Artillery,
most of the 49th Regiment of Foot (British regulars), about 12,000 Militia and 600
Embodied Militia assembled for training. St. Johns, located on the Richelieu River just
north of the U.S. border, was garrisoned by a company of Royal Veterans and one
company of the 49th Regiment. The field works at St. Johns were in ruins and not
worthy of repair, since they could easily be bypassed via new roads leading straight to
Montreal from the United States. Chambly was “unimportant, but as a Post of support
to St. John’s”; this was occupied by 300 Voltigeurs, a detachment of Artillery and two
field guns.36 Prevost lists Fort William Henry (at the junction of the Richelieu and St.
Lawrence Rivers) as one of the most important positions because of its prime location as a depot and place of rendezvous for vessels and boats on the St. Lawrence.37 This was manned by four companies of the 100th Regiment of Foot (British regulars) led by a field officer.

Prevost's main concern was the city of Quebec, the only permanent fortress in the Canadas, and which he called the "key to the whole." He emphasized that Quebec must be maintained: "To the final defense of this position, every other military operation ought to become subservient, and the retreat of the Troops upon Quebec must be the primary consideration."38 Quebec's fortifications, however, were not well maintained, and Prevost elaborated on a plan for improvements. The garrison at Quebec consisted of 2,500 rank and file. The Militia in Lower Canada, while totalling 60,000 had only embodied 2,000 for training and was continuously a matter of concern. He concluded his statements on Lower Canada by emphasizing that Quebec was the most important of all possible targets in the Canadas. Prevost also feared a full scale invasion, stating, "If the Americans are determined to attack Canada, it would be in vain the General should flatter himself with the hopes of making an effectual defense of the open country, unless powerfully assisted from Home."39 One place the governor general did not mention in his plans of defensive works and strategic fortifications was Isle aux Noix, the future birth place of His Majesty's Brig \textit{Linnet}.
CHAPTER III

ISLE AUX NOIX AND THE LAKE CHAMPLAIN THEATER

The Richelieu River-Lake Champlain-Hudson River waterway occupied a strategic location as the main thoroughfare connecting the St. Lawrence valley and the Great Lakes with the Atlantic (Appendix A, Figure 2 and 3). Recognized for both its economic and strategic value, it has been used as an invasion route, north and south, since the seventeenth century. Isle aux Noix, or the Isle of Nuts, is located in the middle of the Richelieu River, twelve miles north of the United States-Canada border and twelve miles south of Fort St. Johns. A strong military force on the island could control water traffic on both sides of the river, making the island strategically valuable. The French took advantage of this post in the Seven Years War and constructed the island’s first fortifications.40 British engineer John Marr stated that Isle aux Noix was “the best spot on the Richelieu for British troops to resist an enemy.”41 Recalling previous contests in this region, Governor General Prevost and the inhabitants of Lower Canada were faced with the knowledge that the Richelieu River would be one of the main invasion routes into the heart of the Canadian provinces. Although he acknowledged the importance of this route, Prevost did not mention Isle aux Noix is his initial report.42

Defensive preparations at Isle aux Noix did not commence immediately with hostilities. The fact that Prevost did not mention the island in his initial report could be
explained by the fact that Isle aux Noix was not garrisoned and he was focusing on either the most proximal concerns (Montreal and Quebec) or the establishments that were already in service. Prevost's attention finally turned to the Richelieu - Lake Champlain area only after American forces began to address their naval inferiority on the lakes. In the summer of 1812, neither of the establishments at Isle aux Noix or St. Johns were serviceable. According to one Royal Engineer the fortifications were not even worth repairing. In September, Prevost recognized the importance of Isle aux Noix's position, placed a garrison there and commenced breaking up the surrounding roads leading into Lower Canada, in the hopes of preventing the enemy from successfully using this important route. The garrison consisted of 665 men of all ranks, with officers and men of the 8th and 100th Regiments of Foot, some Canadian Fencibles and parts of three battalions of Embodied Militia. Prevost also enlisted 150 Indians, stationing them in advance of the line of defense, with orders "for their restraint and control, until the enemy shall have again invaded His Majesty's Territory, when their warlike disposition will be allowed its play." The British government sent their approval of all of these measures, but no reinforcements.

The naval situation at Isle aux Noix in the summer and fall of 1812 looked bleak. At this time, the warships on all the lakes were manned by the Canadian Provincial Marine, which has been described by one historian as, "little more than a transportation service under the Quartermaster-General Branch of the Army." According to an 1811 report on the Provincial Marine, the extent of the Royal naval
force on Lake Champlain consisted of the hulk of the vessel Royal Edward, "which is of no service whatever except furnishing an excuse for pensioning an old seaman who receives pay for the nominal charge of her." Built in 1794, all her sails, rigging and equipment had been moved to Kingston and she was reported as unserviceable five years before the war. By September 1812, three gunboats were moved to Isle aux Noix from Sorel on the St. Lawrence River. In addition to these vessels, the naval base also possessed some batteaux armed with three pounders. This was the extent of British naval preparation for 1812 -- hardly a force to contend with.

The American naval force, however, was no better off. On 29 August 1812, this force, which was set to be augmented through construction and purchase, consisted only of two dilapidated gunboats. Lieutenant Thomas Macdonough arrived at Lake Champlain to take command of the American naval forces on 13 October. He reported two weeks later that his forces consisted of the sloops Growler and Eagle of seven guns each, the sloop President with eight guns (all three commandeered merchant craft), and three transport vessels. No encounters took place before the close of the navigation season between British and American forces on Lake Champlain.

Throughout the war, Prevost pleaded for reinforcements for Canada and emphasized his limitations without them writing, "when ever the pressing exergencies of the Service in other parts of the world will permit, His Royal Highness the Prince Regent will not fail to consider how extremely limited are the means which have been appropriated to the defense of His Majesty's North American possessions, and how
precarious their preservation must be against the force which can be brought against them.55 His requests to the government included trained seamen and, in the fall of 1812, he recommended that the Marine on the lakes be made an establishment under the Navy Board and supplied with officers by Admiralty appointment.56 In October, he went as far as recommending his unemployed brother, a post captain in the Royal Navy, to superintend and organize the naval establishment for the Canadas.57 Despite his pleadings and strong recommendations, the lack of trained seamen persisted and became one of many factors in the eventual loss of naval superiority on Lake Champlain.

The year 1813, which was marked by the arrival of the Royal Navy and Lieutenant Daniel Pring, was filled with success for the British at Isle aux Noix, primarily due to an American naval blunder. Pring, whose home was near Hamilton, Devonshire, entered the Royal Navy young and served as a midshipman in Jamaica. He was aboard H.M.S. Russell at the Battle of Copenhagen in 1801, and on 12 May 1808 received his lieutenant’s commission and command of the schooner Paz at the Halifax Station.58 Admiral Sir John B. Warren, Commander of the North American and West Indian Stations, sent Pring, with Captains Barclay and Finnis, to take command of the vessels on Lakes Erie and Ontario early in 1813.59

Governor General Prevost’s constant emphasis on the need for naval superiority finally persuaded the British government to place the Admiralty in charge of all marine operations on the Great Lakes and Lake Champlain.60 The Admiralty sent Sir James
Lucas Yeo as Commander of His Majesty's Forces on the Lakes and he arrived at Quebec with officers and seamen on 5 May. At this time, Captain Pring was in command of the sloop of war Wolfe on Lake Ontario. Pring's position on the Great Lakes proved short-lived. Some authors have suggested this was due to an inability to get along well with Commodore Yeo but neither cites their sources for this and the nature of any disagreement is unknown.

Prior to the Admiralty assuming control, the Provincial Marine force at Isle aux Noix had been busy. In April, work commenced on three additional gunboats, the first vessels built on the island. A corps of seamen raised in Montreal and consisting of First Lieutenant William Lowe, two second lieutenants and 52 enlisted men manned the new vessels. These seamen were paid at a rate of one shilling, eight pence per day and received a marine ration. In addition to this, they received a twenty dollar bonus upon enlistment, from which they were to buy a glazed hat, blue jacket and trousers. The enlistment period was eighteen months or the duration of the war, and they were subject to furlough without pay during the winter. In late May of 1813 the British force was still outnumbered and outgunned on the lake, but by the third of June the American naval squadron had lost its flagship President, which grounded near Plattsburgh, and the sloops Growler and Eagle.

At 5:30 AM on 3 June, British lookouts discovered the U.S. sloops Growler and Eagle just off the shore of Isle aux Noix. Lieutenant Sidney Smith, their overeager commanding officer, was falsely assured by his pilot that the vessels could safely
navigate the channel of the Richelieu River. The vessels ventured too far, however, and found themselves in a narrower channel than expected, with adverse winds and contrary currents. Major George Taylor, commanding officer of the garrison in the absence of a Lieutenant Colonel Hamilton, ordered out three gunboats to intercept the vessels, and placed the crews of two batteaux and rowboats on each shore in an attempt to rake the vessels with cannon and musket fire. After battling three and one half hours, the sloops surrendered with one man killed, eight wounded and 91 taken prisoner. The British suffered only three men wounded. The sloops were renamed Shannon (ex-Growler) and Broke (ex-Eagle) and repaired immediately for service on the lake. They were also evaluated for prize money by shipwright William Simons of Kingston, who set their value at £5,068-10/11. This was shared by the whole garrison at Isle aux Noix, both afloat and ashore.

With the sloops Shannon and Broke, the British held control of the lake for the remainder of the summer. In July, Prevost and Yeo agreed to appoint Pring as commander of the naval forces on Lake Champlain. At this time, Prevost requested that Pring be given his Captain’s epaulets, but instead the Admiralty gave him the rank of Commander on 13 November 1813. The official reason for Pring’s transfer was that since Yeo’s arrival on Lake Ontario there was no room for him, and as an able officer he deserved a better position. By 17 July, Pring was on his way to St Johns, Montreal and Quebec in search of seamen for Isle aux Noix. Pring’s official activities included participating in several raids, pressing for more seamen and, of particular
importance to this story, requesting the construction of the brig *Linnet*.

Pring’s trouble obtaining seamen became the major theme of the year. He made two extended trips to Montreal and Quebec during the summer and fall to obtain men but had only limited success. Initial estimates of the numbers of men needed peaked at 110. Some men were found to serve in particular actions, for short periods of time, or as partial fulfillment of the quota made up by transfers from other vessels. The problem was that the majority of seamen sent from England were taken by Yeo for service on Lake Ontario. By 15 November, Yeo himself estimated -- upon Prevost’s’s request -- that the number of men needed for the Lake Champlain flotilla amounted to 290 Marines. Whether or not Prevost’s request was intended to alert Yeo to the shortage of seamen for Lake Champlain, and halt the drain of men towards the Great Lakes is unclear, but on the same day Prevost did order some of the army’s troops at Isle aux Noix to work under Pring.

Captain Pring participated in successful raids during the 1813 season, the first of which was an attack by water, later known as Murray’s Raid. Naval command for this action was temporarily held by Captain Thomas Everard of H.M.S. *Wasp* at Quebec. Prior to the raid’s departure, Major General Sir Roger Sheaffe toured the facility at Isle aux Noix and pronounced everything in readiness for the first fair breeze. Sheaffe also remarked that “chance has given naval command to an officer [Everard] who appears worthy of being selected for it.” The objectives of the raid were to destroy the enemy’s stores, arsenals, block houses, and garrisons at Plattsburgh,
Swanton and Champlain Town. An attack on Burlington, Vermont was also planned, but the shortage of troops ruled this out. Lieutenant Colonel John Murray was in charge of the British Army forces, which consisted of nearly 1,000 troops transported in 47 batteaux and three gunboats. Naval forces consisted of H.M. sloop *Broke*, Captain Thomas Everard commanding, H.M. sloop *Shannon*, Captain Pring commanding, and one gunboat.

On 29 July, these forces sailed up the New York side of the lake. The raiders successfully destroyed all barracks, block houses, arsenals and stores at Plattsburgh, Champlain Town, Saranac and Swanton. After the Plattsburgh landing, *Broke* and *Shannon* set out for Burlington to report on the enemy’s positions and numbers. The Royal Navy captured or destroyed four commercial vessels but were unable to lure Macdonough and the American forces out of Burlington Bay to fight, and therefore returned to Isle aux Noix. The raid was considered successful on all counts and the British sustained no losses.

The British were in control of the lake through August, but the problem obtaining seamen continued until they were no longer able to maintain superiority against the American numbers. On the first of this month, a comparison between naval forces on Lake Champlain listed the British with H.M. Sloops *Broke* and *Shannon*, each with forty men, and three gunboats with twenty men each. *Broke* was armed with ten 12-pounder carronades and one long 18-pounder and *Shannon* mounted ten long 6-pounders and one long 18-pounder. The United States had U.S. Sloop *President*...
mounting eleven guns, three gunboats and three scows. A muster list for the
Admiralty establishment at Isle aux Noix in late August listed only 34 Royal Navy
men, including Pring (Appendix A, Figure 4). By late fall the American force of 250
men greatly outnumbered the British force of 68 men. The American fleet, under the command of Lieutenant Thomas Macdonough,
soon grew to five sloops and four gunboats. Due to the lack of men, poor weather, and
reluctance to risk his sloops to Macdonough’s now-superior force, Pring confined naval
operations to minor raids on the northwest shore of the lake for the remainder of the
year. These raids were carried out through November and December and ended with
the capture of several batteaux, a small quantity of ammunition and provisions, and the
destruction of a supply depot at Cumberland Head. Severe weather forced Pring to
return early from his last raid on 5 December, when he had to cut his way through
several miles of ice. This raid was followed by an unsuccessful sortie up the Salmon
River in mid-December to blow up a powder magazine, which ended the war on Lake
Champlain for 1813.

Daniel Pring was also responsible in 1813 for obtaining contract approval for
the brig Linnet. The first mention of the construction of a brig on Lake Champlain is in
a report from General Sheaffe to Prevost after his visit to Isle aux Noix on 29 July
1813. Here he states that Mr. William Simons was certain he could build and
complete a brig of 16 guns in six weeks and that sufficient timber was deposited on the
island for him to do so. Simons, a shipwright originally from Renfrew, Scotland, and
then working in Kingston on Lake Ontario, had been called to Isle aux Noix to evaluate the *Eagle* and *Growler* as prize vessels. After Murray’s Raid, on 5 August, Everard and Pring strongly recommended the immediate construction of a brig and two gunboats. They recommended a vessel with length on deck of 110 feet, extreme breadth 30 ½ feet, draft of water aft 9 ½ feet, measuring 350 to 390 tons and mounting fourteen 32-pounder carronades in broadside and two long 24-pounders on centerline pivot mounts. Pring’s recommendation continues saying, “there is now laying at Isle aux Noix, 4 to 5,000 feet oak timber with sufficiency of pine, by collecting all the carpenters to be found in Quebec and here, could be launched from 6 to 8 weeks from the laying the keel, might probably cost the hull afloat with spars from 14 Pounds to 15 Pounds per ton. A suit of sails belonging to Mr Dunlop intended for a ship of 300 to 350 tons might be had for 550 Pounds.”

On 8 August, Prevost approved the two gunboats mounting two guns each and ordered their construction to begin. Although agreeable to Pring and Everard’s suggestion, he reserved consideration of the brig for later, which turned out to take nearly three months. On 12 August, Prevost requested a detailed estimate for the brig. Pring forwarded this to Military Secretary Noah Freer five days later. Including the cost of the hull, spars, four boats, anchors, cables, hawsers, blocks, pumps, sails and rigging, Simons estimated the total cost at £7,738 -10s. Pring sent steady reports detailing the growth of the American naval force on the lake and finally on 10 October, wrote to Prevost: “The Enemy having lately increased their force on this Lake to five
Sloops, three of which are very superior in size and Weight of metal to either of the two at present under my command, I hope Your Excellency will be pleased to authorize the Building of a Brig of 16 Guns at this Port, or two smaller Vessels, which additional force is absolutely required to enable me to meet the enemy squadron.109

Prevost still did not agree to authorize construction of the brig and on 15 October, consented only to the building of one sloop or schooner of 100 to 120 tons.110 Pring was not pleased with this decision since a sloop of that size would be only a few tons larger than the Shannon. On 18 October, he wrote that a vessel that size “could not be constructed to carry a greater weight of Metal than her [Shannon]or the Broke, who being converted from Merchant Sloops are by far too much crowded with their Guns.”111 Prevost responded the very next day saying it was not his intention to limit the tonnage of the proposed vessel, he was simply concerned that the dimensions of the brig proposed were too big for the Richelieu River. Noah Freer continued this line of thought, saying, “At the same time I have to observe that it is not within the Compass of His Excellency’s expectations that we can cope with the Enemy in the building of Vessels on Lake Champlain, their resources on that Water being so far Superior to those we possess.”112

It was November before Prevost finally acceded to Pring’s request. On 31 October, a few days before this authorization, the British Prime Minister sent a letter describing the Prince Regent’s satisfaction with the affairs to date, although the latter part of the season had seen no decisive operation. This letter was not received until
after Prevost gave in to Pring’s request. It stated, “I would impress upon you the necessity of so using, during the winter, the naval means, which have been placed at your disposal, as to be secure against an inferiority, if not to maintain an ascendancy on the Lakes.”113 On 7 November, Prevost finally conceded to build a vessel more closely resembling the one originally proposed by Pring. On 8 November, Pring sent the final contract, drawn up by William Simons, and requested supplies and additional artificers to begin work under the shipwright as soon as possible.114 The contract specified that Simons would build the vessel of the dimensions already specified (without the joinery, inboard work or boats) for £6 Halifax currency per ton, to be launched and completed by or before 1 May 1814. This was providing that the spikes, bolts and iron work were forwarded without delay, the workmen furnished with lodgings and marine rations, and special permission was obtained to employ ten to twenty military artificers, such as the ship’s carpenter and blacksmith, at a rate of one shilling and nine pence per day.115

Despite Pring’s best intentions, work on the brig did not commence immediately after contract approval due to the lack of a proper facility and supplies at Isle aux Noix. Before work could begin, a dockyard had to be built and all the necessary ironwork, supplies and laborers had to be shipped in.116 In early winter, Pring wrote Prevost saying that the Engineer Department had failed to procure the necessary supplies and he feared “it will not be in my power to collect them as expeditiously as the Engineer Department have hitherto done, having no knowledge of the neighboring resources.”117 He also mentioned that the Commissary General preferred to obtain
supplies through the Marine Department to prevent confusion and any further delay. This is important because it indicates that Simons may have been forced to use local supplies rather than material sent from Great Britain, which the original contract had specified. On 13 December, 100 shipwrights and other artificers were sent from Quebec to Kingston; Isle aux Noix, however, received only 20 seamen. Gradually, supplies and men trickled in and a dockyard was built over the northeast redoubt of the old fort dating from the 1780s, midway up the east side of the island (Appendix A, Figures 5 and 6). Along with the dockyard, some storehouses, a hospital, naval barracks and a forge were built. With the dockyard constructed and Linnet’s contract approved, the shipbuilding race on Lake Champlain officially began.

Construction on the brig continued through the winter, hastened by reports of American shipbuilding activity at Vergennes, Vermont. The brig, initially named Niagara, was completed and launched in April, and placed under the command of Captain Daniel Pring (Appendix A, Figure 7). Its name was changed from Niagara to Linnet as the result of the Admiralty taking control of all naval matters on the North American lakes in January, ending the jurisdiction the army had enjoyed since the 1750s. The Admiralty requested that all colonial vessels be registered on the List of the Royal Navy, and recommended the name Linnet.

A January 1814 statement of the naval force on the lake listed Linnet as 85 feet in length and 26 1/2 feet in breadth. Differences exist between sources concerning Linnet’s armament. The January 1814 statement listed her as mounting two long 18-
pounders and fourteen 32-pounder carronades. Another contemporary source lists *Linnet* carrying 18 guns. Historian Allan Everest states that the brig mounted 20 guns, but in a subsequent comparison of the squadrons in the Battle of Plattsburgh Bay, he lists only sixteen long 12-pounders. Modern historians tend to agree with the last figure, sixteen long 12-pounders, particularly as it is represented thus in the court martial records. *Linnet* was nearly ready for battle by May, lacking only a galley or camboose which Pring wanted to purchase from a merchant vessel. Simons’ work impressed Pring so much that on 27 April he recommended that the shipwright be appointed Master Builder at Isle aux Noix. On 6 May, this recommendation was approved and Simons received a pay raise accordingly.

In addition to *Linnet*, the naval force at Isle aux Noix was enhanced by the construction of other vessels. The same reports that caused the hurrying of *Linnet*’s construction convinced Yeo to recommend the building of six to eight additional gunboats for Lake Champlain. A contract for two of these was approved by Prevost in mid-March. Yeo requested additional gunboats again in April, but no contract was drawn up per his recommendations. In addition, the possibility arose of constructing ships using ready-made frames sent from England. Frames for four brigs were sent for Lake Ontario but Yeo decided it was not worth the time or money to transport them overland all the way to Kingston. He asked Pring if they could be used on Lake Champlain, but doubted that they would work for Isle aux Noix since they would draw 15 feet of water. Pring confirmed this, saying that the maximum draft for navigating
the Richelieu safely was 10 feet. On 23 May, after he examined the frames, Simons informed Freer that the frames would have to be cut down to use, and in the process would lose too much wood.

With the completion of Linnet, the British naval force at Isle aux Noix was barely superior to the American flotilla at the time. At the beginning of the season, Pring had the brig Linnet with 16 guns, the sloops Chub (ex-Shannon) with 13 guns and Finch (ex-Broke) with 11 or 13 guns, the tender vessel Icicle, the sloop Canada (ex-Mars) with two long 6-pounders, one 24-pounder carronade and one 12-pounder carronade, and seven to ten gunboats. Pring knew that as soon as the Americans received the ordnance for their vessels at Vergennes, and outfitted the ship Saratoga, Macdonough would control the lake. To counter this threat, Pring and Simons submitted a contract in May and immediately began constructing the largest warship ever to sail the lake - the frigate Confiance, 1200 tons and mounting 37 guns.

Linnet's first official action on Lake Champlain was the May 1814 raid at Otter Creek. Ordered by Yeo to destroy the enemy's vessels or at least block them from entering the lake, Pring set out on 8 May for the American shipyard at Vergennes, several miles upriver from the mouth of Otter Creek. The British flotilla consisted of Linnet, Chub, Finch, the auxiliary sloop-rigged tender Canada, a flotilla of seven gunboats and two additional transport vessels. Prevailing southerlies prevented them from reaching Otter Creek until 14 May, which gave the Americans plenty of time to prepare; so much so, that Pring concluded in his report it was "impossible to effect
either object without the co-operation of a military force."142 At dawn the gunboats
manned by 120 marines and 60 seamen engaged the recently constructed American
battery, called 'Fort Cassin' at the mouth of Otter Creek. By 5:00 AM, \textit{Linnet} had
sailed within range of the battery, but after reconnoitering the situation in a gig, Pring
decided to forgo the assault against what he perceived as a well-prepared and decidedly
superior defensive force.143 With one seaman killed, two marines wounded and two
small boats shot adrift during the action, Pring returned to Isle aux Noix.144 The only
real success of this mission was the information attained about the state of the
American flotilla. Pring believed it consisted of the new ship \textit{Saratoga} with 28 guns (it
was actually 26), an unknown schooner (\textit{Ticonderoga}) mounting 22 guns (actually 17),
the sloops \textit{Preble} with 11 guns and \textit{Montgomery} with 9 guns, and ten gunboats.145

As the year progressed on Lake Champlain, Isle aux Noix and Lower Canada
were still plagued with many of the same problems that had existed since the beginning
of the war, but with the European war nearing a conclusion, the defensive policy of
British North America soon changed. With April came Napoleon's abdication and the
chance for the British government to focus on the conflict in North America. Evidence
of the sudden change in policy came in a secret letter from Earl Bathurst to Governor
General Prevost signed the 3rd of June, 1814 (Appendix A, Figure 8). In this
communication, Bathurst indicated that the army in Canada would be strengthened by
10,000 seasoned regulars sent to Quebec, with an additional 5,000 employed against
the United States coast. The British government, pressured by a deteriorating economic
situation and beseeched by powerful trade interest groups to end the war, planned to launch a major offensive that would force the Americans to sue for peace. ¹⁴⁶

With the reinforcements in Canada, Bathurst continued, it would be possible to carry on an offensive operation against the enemy’s frontiers although “it is by no means, the intention of His Majesty’s Government to encourage such forward movements into the Interior of the American Territory as might commit the safety of the Force placed under your command.”¹⁴⁷ The objects of the operation were to protect the provinces and obtain if possible, ultimate security for His Majesty’s possessions in North America. This would be accomplished by: 1) the entire destruction of Sackett’s Harbour and the U.S. Naval establishments on Lakes Ontario and Champlain, and 2) the maintenance of Fort Niagara and occupation of Detroit and as much of the Michigan Territory as possible.¹⁴⁸ In addition, Bathurst stated that should there be any advanced position on Lake Champlain, the occupation of which would secure the province, Prevost was to occupy that area but not allow his forces to be cut off from Canada. These instructions were the impetus behind a series of preparations enacted by Prevost that led to the final battle on Lake Champlain.

Despite word of assistance from the British Government, Prevost had plenty of unresolved problems with which to contend. The economic state of the provinces was still not solid, partly due to the fact that the Americans were making counterfeit currency and introducing it across the border.¹⁴⁹ Desertion among the troops was also an all-too-common occurrence, exemplified by the 103rd Regiment, which lost 51 men
in a single deployment.150 Prevost was also concerned about the loss of Indian support in the west (due to a series of British defeats in the fall of 1813); he feared that without Britain's native allies, the Mississippi and Missouri rivers would remain under American control, severely restricting the trade of the South West Fur Company.151

Another major problem, intensified by the presence of the 10,000 additional troops and 2,000 Native American auxiliaries, was the food shortage facing the provinces. On 27 August, Prevost wrote that Upper Canada was out of meat and other provisions for winter and that two thirds of the army in Canada was eating beef provided by American contractors in New York and Vermont.152 Keeping these concerns in mind, Prevost moved with much trepidation towards the fall operations in the Lake Champlain theater. He was goaded into action by a dispatch received in August which stated that if the present campaign closed without offensive operations against the enemy, Prevost would "seriously disappoint the expectations of the Prince Regent and the country."153

During the late spring and summer, the naval base at Isle aux Noix saw many preparations for the offensive operations. First, there were two changes in command structure. On 24 June, Daniel Pring was replaced by Captain Peter Fisher as the commanding officer at Isle aux Noix.154 Pring, however, retained command of \textit{Linnet}. Later that summer, on 25 August, Captain George Downie, a more experienced officer than either Pring or Fisher, was assigned the command of the naval establishment by Yeo.155 George Downie was the son of a clergyman in Ross County, Ireland.156 He, like Pring, had joined the Royal Navy at a young age; he served aboard the frigate \textit{Circe} in
the battle of Camperdown in 1797, followed by service on the frigates Melampus and Apollo in the West Indies. He was promoted to lieutenant in 23 March 1802 and served aboard the frigate Sea Horse of 36 guns. Downie was appointed Commander on 6 July 1808 and Captain on 1 January 1813.\(^{157}\) In August, 1814, he was assigned the command of the Lake Champlain squadron, and because he had overall command of several ships, Downie automatically acquired the courtesy title of Commodore.\(^{158}\) Prevost agreed with Yeo that Downie was well qualified by experience and temperament for command on Lake Champlain.

When the new commodore arrived at Isle aux Noix in late August lack of manpower remained a problem.\(^{159}\) Throughout the summer, Pring and Fisher asked for men but their requests were turned down by Yeo, who insisted that sailors were more urgently needed on Lake Ontario.\(^{160}\) The situation was made worse when Lieutenant Colonel R. Williams of the Royal Marines wrote Prevost saying that according to regulations, Linnet required only one lieutenant and 18 privates, and there were no less than 100 Marines in the brig and two sloops already. Williams complained that “no where but in Canada have the Marines been employed to row gunboats.”\(^{161}\) The Admiralty ordered the 1st Battalion Royal Marines to Isle aux Noix to replace the detachment there.\(^{162}\) On 14 August, Prevost toured the island with senior Admiralty officials, Rear Admiral of the Blue Sir Robert Waller Otway and Lord James O’Bryen (the Marquess of Thomond), to impress upon them the necessity of obtaining seamen for Confiance and for the other ships in the flotilla.\(^{163}\) On 19 August, Prevost requested
seamen from seagoing ships in the St. Lawrence River and obtained a promise of 150 reserved for service along with an additional 40 discharged from Royal Navy warships _York_ and _Vanguard_. The rest would have to be obtained in Quebec, with volunteers who were guaranteed a return date of 25 September at the latest.

Confiance was launched at 4:30 PM on 25 August, 1814; although a battle with the American squadron was imminent, the frigate was almost completely unprepared. The crew, many of whom were said to be of inferior quality, only joined the ship on 5 September. Thus they were unfamiliar with the ship, the officers and each other. The guns were only exercised two or three times prior to battle, and the ship’s deck was roughly finished. In addition, only one pump was fit for service, some of the breaching bolts were unclenched and the powder magazine was not completed until after the ship had left Isle aux Noix. Simons and his crew of about 25 carpenters worked around the clock to finish the ship, with full knowledge that Prevost had decided to go ahead with the joint land-water attack on Plattsburgh, New York.

Prevost himself was prodded into action by the British government starting in the summer of 1814. Bathurst’s secret letter to Prevost outlined the British plans to end the war with a final push into the American interior and included specific instructions for taking an advanced position on Lake Champlain. Prevost was also reminded in August that a season without action would reflect poorly on him in the eyes of the Prince Regent and his country. As Allan Everest noted, the governor general may not have been enthusiastic about his orders and had every intention of avoiding Vermont
which had shown opposition to the war. Under these circumstances, and considering the impending winter which would close the navigation season, Prevost’s probable objectives were to take control of Lake Champlain and destroy the American forces along its western shore. He may not have intended to occupy New York for long or push into the interior of the country, but would have been satisfied with dealing a devastating blow to the American naval and military forces in the Champlain Valley. Prevost’s intentions in September of 1814, together with the pressure he was under from the British government, explain why he forced Captain Downie and the British flotilla into action prematurely.

On 1 September, Downie, commenting on the fact that the new flagship did not possess any gun locks, remarked: “In a few days she will be before the enemy and the want of locks may be seriously injurious in action.” Simons had been constrained, not only by a lack of men, but of materials for the ship’s construction, especially since many supplies from American contractors were intercepted during smuggling attempts. On the same day that Confi ance was launched, Prevost and the bulk of the British Army crossed the border. As Prevost made his way toward Plattsburgh, he heard of the new American brig Eagle of 20 guns, and expressed his concerns, quite prophetically, for the effectiveness of the British flotilla, the ill-prepared Confi ance, and his own battle plans against the rapidly-fortifying American Army:

Your Royal Highness is aware that the debouchees from the Canadian frontier into the United States offer nothing to encourage a General to penetrate into that Country. It appears to me that I should be wanting in Common Circumspection to engage in an extensive operation without having previously acquired the naval
ascendancy on either of the Lakes [Champlain or Ontario], and my hopes of gaining that advantage over the Enemy, this Season have vanished ... I am afraid our Commodore [Downie] will not think himself sufficiently strong to venture out of the Narrow Waters - Upon taking into consideration all these circumstances, your Royal Highness, will I hope be disposed to approve of my confining my operations to such as are only of a limited nature, and not exposed to great risk from the means the enemy possess by the Command of the Lake [Champlain]... I foresee the clamour of the ignorant and the vain will be against such a line of conduct but I shall not lightly commit the honour of His Majesty’s Arms, and the safety of the Territory His Royal Highness the Prince Regent has commanded me to defend.¹⁷²
CHAPTER IV

THE BATTLE OF PLATTSBURGH BAY

The British sent to engage the Americans at Plattsburgh Bay certainly had some advantages, though they were working against a set of complex, inherent weaknesses that weighed heavily against them. Of greatest concern to Downie was the ill-prepared state of both Confiance and of the recently acquired and untrained crews, which contained a great many soldiers from the 39th Regiment and Canadian militia. The courage and determination of the latter were especially suspect. The Royal Navy’s flotilla consisted of the 37-gun flagship Confiance, the brig Linnet of 16 guns, the sloops Chub and Finch of 11 guns each, a small barge, the tender Canada, sloop Icicle and twelve gunboats. The gunboats, named for military figures, included Sir James Yeo, Sir George Prevost, Wellington, Drummond, Murray, Sir Sidney Beckwith, General Blucher, Beresford, Popham, Brock, Simcoe and Tecumseh. The total armament of the flotilla was 92 guns capable of firing 1,804 pounds of metal in a broadside and 917 crew members. This was comparable to the American flotilla of 86 guns, with a broadside weight of 2,224 pounds and 820 crew members. Whereas the Americans had anchored in Plattsburgh Bay days before the battle and had time to prepare, Confiance was the last ship to leave Isle aux Noix, towed from the island on 8 September. It was under these circumstances that a wary Commodore Downie first experienced the waters of Lake Champlain.
Linnet, under Pring’s command, had already been on the lake for several days before she was joined by *Confiance*. Pring was directed by Downie to command the flotilla of gunboats and protect the left flank of the British Army heading towards Plattsburgh. On 3 September, Pring erected a battery for the protection of the army’s supply depot and anchored *Linnet* near Isle La Motte.177 *Confiance* joined *Linnet* on 8 September and they proceeded by warping, sweeping and towing towards Chazy to rendezvous with the rest of the squadron.178 The last day that H.M. Brig *Linnet* sailed up the lake under Royal Navy command was on 11 September 1814, when the British fleet entered Plattsburgh Bay to attack the waiting American naval squadron.

Governor General Prevost’s pushing of Downie and his flotilla into action before they were ready is one of the most critical and most immediate factors responsible for the battle’s outcome. Evidence of this exists in several letters written between Prevost and Downie on the days leading up to the battle. On 8 September, off Point au Fer, Downie wrote: “I am advancing with Squadron to Chazy as fast as the wind and weather will allow...I stated to you that this Ship was not ready. She is not ready now, and, until she is ready, it is my duty not to hazard the Squadron before an Enemy who will be Superior in Force.”179 The next day Prevost responded that he had postponed moving to the banks of the Saranac and, “I need not dwell with you on the Evils resulting to both Services from delay.” The correspondence between Prevost and Downie would become critical in the ensuing court martial.

The general plan was that the land force would attack the American forts on the
south bank of the Saranac River at the same time that the naval force engaged the enemy’s fleet in the bay. With the capture of Plattsburgh and the American fleet, control of the Champlain Valley would be firmly in British hands. Downie and Prevost had decided that the scaling, or regular firing, of Confidence’s guns would signal that the fleet was just about to enter the bay and attack the American squadron. Downie kept his part of the agreement, but the land forces got off to a late start and took the wrong roads. Part of the problem was Prevost’s and Downie’s differing opinions of what a cooperative attack meant. Downie thought the army would capture the forts early and turn their guns on the American fleet, while Prevost thought that Macdonough should be defeated first and then the army could take the forts.

Downie’s plan for the naval engagement in the bay was relatively simple. After reconnoitering the enemy’s positions in a gig, he learned that Macdonough had anchored the vessels in a line running north-south with the brig Eagle at the northernmost position, followed by the flagship Saratoga, Ticonderoga and Preble with ten gunboats in support. Downie ordered Linnet and Chub to engage Eagle, Confidence to attack Saratoga, and Finch and twelve gunboats to attack Ticonderoga and Preble. The British fleet sailed into the bay at about eight o’clock in the morning and approached their positions (Appendix A, Figure 9). As Linnet passed the American flagship Saratoga, Pring ordered a broadside fired and by nine o’clock the battle was in full sway.

Immediately, everything went awry for the British. First of all, the Americans,
having plenty of time to prepare, had anchored at pre-established positions which freed hands for gunnery and provided the guns with a more stable platform. The British had to divide their hands between controlling the sails and manning the guns. *Confiance* was battling a raking fire from *Saratoga* and uncooperative winds which forced her to anchor prematurely, before she could cross the American flagship’s bow. In this position *Confiance* became the primary target of most of the enemy vessels and she sustained tremendous damage. *Chub* lost her cables, bowsprit and main boom in a very short amount of time, drifted between the fleets and was the first to surrender (Appendix A, Figure 10). *Preble* and *Ticonderoga* poured fire into *Finch*, which lost steerage when trying to tack and ran aground off Crab Island, depriving the squadron of her assistance. Eight of the gunboats did not enter the fray, and even refused to come to the assistance of the other vessels. This was partly blamed on the gunboat commanders, including Lieutenant Raynham, who commanded the first division and set a poor example by refusing to participate in the battle altogether. Most of the blame, however, fell on the crews, which were composed of Canadian militia and many men who spoke only French. The latter were considered especially inferior for naval engagements and were reported afterwards to lie down in the boats and refuse to fight.

Pring’s actions aboard *Linnet* were not among the factors that contributed to the British loss of the Battle of Plattsburgh Bay. *Linnet’s* assignment was to take the northernmost position in the line of battle and, together with *Chub*, to fire upon the
American brig *Eagle.* This she did for over two hours. *Linnet* was, in fact, the only ship to hold position as ordered and her crewmembers did their job so well that Captain Robert Henley of the *Eagle* described *Linnet*'s fire as “raking and most destructive.” Henley eventually cut the *Eagle*'s bower anchor cable and, giving up his position, sailed past the American flagship *Saratoga* to a new position out of reach of *Linnet*'s guns.

The Royal Navy's flagship *Confiance,* plagued with ill luck from the beginning, was not as successful. Within the first 15 minutes of battle, Commodore Downie was mortally wounded. The crew, spurred on by the junior officers, continued at their stations for some time, but the Americans had a surprise. The flagship *Saratoga* (and the other large American vessels) had rigged kedge anchors and spring lines so that after their starboard batteries had been rendered useless, the vessels could be turned around bringing fresh guns to bear. About two and one half hours into the engagement, Macdonough ordered his crew to swing *Saratoga* around and commence firing with the port battery. The British flagship tried to copy this maneuver but failed. The large numbers of wounded or dead, the 17 disabled guns and the state of *Confiance,* which was taking on water fast, eventually forced Lieutenant James Robertson to strike the colors (Appendix A, Figures 11 and 12).

The final blow to the British came when Pring witnessed the surrender of *Confiance* at approximately 10:30 AM and the “whole attention of the Enemy’s Force then became directed towards the *Linnet.*” By this time, damage to *Linnet* was
considerable and a withdrawal would have been impossible. But, hoping that the
gunboats would come to his aid and engage the enemy, Pring elected to keep up the
fight. At 11:20 AM, after observing the state of the flotilla and realizing that no help
would come, he was finally obliged to surrender.196 His Majesty's Brig Linnet was the
last major warship to surrender on Lake Champlain.
CHAPTER V

AFTERMATH: PEACE AND A COURT MARTIAL

The Battle of Plattsburgh Bay lasted two hours and twenty minutes, with a heavy human toll. For the Americans, casualties totaled 110, with 52 killed and 58 wounded.197 Although initial estimates for the British listed 129 casualties,198 later historians agreed on a total of 170, with 54 officers and men dead and 116 wounded.199 Differences also exist over the casualty list aboard \textit{Linnet}. One author’s estimates are as high as twenty men killed and thirty wounded from the 120 member crew.200 The court martial information lists total casualties at 24, which is probably more accurate.201 Aboard \textit{Linnet}, eight seamen and Marines were killed and 13 were wounded. Two officers, Lieutenant William Paul and Boatswain Charles Jackson were killed, and one officer, Midshipman John Sinclair, was wounded. Paul fell early in the action, Jackson was killed at the end of the engagement, and Sinclair sustained a serious blow to the head.202 Pring commended several officers and men aboard for their fine performances during the engagement. Among these were Lieutenant William Drew, the Purser Mr. Giles, as well as gunner Muckle, and seamen Clark, Fouke, and Guy. He also praised the surgeon, Mr. Mitchell, who cared for the wounded, performed amputations during the action, and assisted below deck even when \textit{Linnet} was taking on water.203 Besides Downie and the two officers killed aboard \textit{Confiance}, one of the greatest British losses was that of Master Builder William Simons, who had stayed aboard his newest creation
to finish the ship.204

The victory on Lake Champlain and Prevost’s hasty retreat led to the signing of the peace treaty in Ghent. By December 1814 the British naval blockade on the eastern seaboard had exacted a high cost on the U.S. economy. In addition, the U.S. capital and other eastern cities had been sacked and burned. The American and Canadian people were weary of the war, and both the British and United States governments were under pressure from business interests to end the war. In addition, when the Prime Minister asked the Duke of Wellington in November to go to Canada and continue the war, Wellington declared that without naval superiority there was no point.205 This assessment, together with the fact that Wellington’s presence would make the situation look worse than it already was, helped convince the British government to settle for peace. The treaty between the United States and Great Britain was signed in Ghent on 24 December 1814. The Royal Navy’s investigation into what occurred on 11 September 1814, had only just begun.

The official answers to the British government’s inquiries would be recorded at the court martial of Daniel Pring and the officers and men employed in the squadron on Lake Champlain. These proceedings were held aboard H.M.S. \textit{Gladiator} in Portsmouth Harbour between August 18 and 21, 1815. When Daniel Pring took the stand at his trial, the court asked him directly, “To what cause do you attribute the failure of the Engagement?” Pring’s official reply was: “To the want of the promised Co-operation of the Land Forces, I conceive that we should otherwise have been successful in our
Throughout the hearing, this theme appears again and again as one officer after another concurred with Pring’s assessment.

Letters written by Prevost explaining his orders to withdraw the land forces were submitted during the court martial. After witnessing the surrender of the fleet, Prevost ordered the army back to Chazy and shortly thereafter, back to Canada, stating in his report to Bathurst: “This unlooked for Event [the Royal Navy’s surrender] depriving me of the Cooperation of the Fleet without which the further prosecution of the Service was become impracticable, I did not hesitate to arrest the course of the Troops advancing to the attack, because the most complete success would have been unavailing, and the possession of the Enemy’s Works offered no advantage to compensate for the loss we must have sustained in acquiring possession of them.”

Prevost defended his decision for this action in later correspondence and all the while focused on his original orders - to defend Canada, not to put His Majesty’s troops at too great a risk and definitely not to allow the forces to get cut off from assistance by too great a line of advance (Appendix A, Figure 13). In a private dispatch to Bathurst on 22 September, Prevost explained that with the naval disaster, any further offensive movements by the troops would have been dangerous, listing the following reasons:

From the state of the roads Each days delay at Plattsburgh made my retreat more difficult - The Enemy’s Militia was raising En Masse around me, desertion increasing and the Supply of Provisions scanty. Excluded from the advantage of water conveyance, & that by roads passing through Woods & over Swamps becoming, from the state of the weather as well as from the Obstructions made by the Enemy nearly impassable. Under the circumstances I had to determine whether I should consider my own Fame by gratifying the Ardor of the Troops in persevering in the Attack, or consult the more substantial interests of my Country by
withdrawing the Army which was yet uncrippled for the security of these Provinces. The most ample success on shore after the loss of the Flotilla could not have justified the sacrifice I must have made to obtain it. Had I failed, ...the destruction of a great part of my Troops must have been the consequence, & with the remainder I should have had to make a precipitate and embarrassed retreat, one very different from that which I have made.209

Daniel Pring stated his case in his first official report on 12 September, when he asserted that the fleet had been rushed into the engagement for the purpose of cooperating with the land force under Prevost. When Pring arrived at Kingston on parole and handed over the correspondence between Downie and Prevost, Commander Yeo stated his official opinion on the loss: “It appears to me, and I have good reason to believe that Captain Downie was urged, and his ship hurried into Action before she was in a fit state to meet the Enemy.”210 The court agreed with both Yeo and Pring’s statements and the testimonies of all the men, and stated that the capture of Confiance, Linnet, and the rest of the squadron was due to the British squadron being rushed into battle, the letters from Prevost urging Downie to move, and Prevost’s failure to carry out the joint attack at the agreed upon time. With the exceptions of Chub’s commander James McGhie, who did not attend the court martial, and Lieutenant Raynham who deserted in Canada, all of the surviving officers and company were honorably acquitted and Pring was promoted to Captain within a month.211

In reality, the loss of the British fleet on Lake Champlain was influenced by many complex factors, spanning several years and two different continents. These factors included more immediately the poorly trained crews, the incomplete flagship and recent administrative changes. Yeo’s policy of diverting men and supplies to Lake
Ontario, the economic situation of the provinces, and the pressure Prevost felt to lead an offensive operation before the season’s end also contributed. Compounding these were Britain’s poor economic situation and the lack of assistance for her North American provinces during the Napoleonic Wars. In addition, the paucity of sailors in Lower Canada, the socio-political struggles between the French and Anglo-Canadians, and the intertwined economies and social systems of Lower Canada and New England, all affected the nature and outcome of the war. Many of these things only become apparent with historical perspective. Unfortunately for history, the one man the court never had the opportunity to question was Governor General George Prevost. A ship of war was sent to bring him home and he left Canada in April, 1815, but Sir George died one month before his scheduled - and highly advertised - court martial.212
CHAPTER VI

FATE OF THE FLEET

For *Linnet*, the loss at Plattsburgh Bay signaled not the end of the story, but a change of flag. Upon her surrender, His Majesty’s Brig *Linnet* became the United States Navy Brig *Linnet* and everything aboard became U.S. Navy property, including the remaining ordnance stores. *Linnet* carried sixteen long 12-pounders and had been officially issued 1,315 gun cartridges, 2,000 round shot, 136 case shot and 384 stands of grape shot. An inventory of captured stores lists 1,102 powder cylinders or cartridges, 4 kegs of priming powder, 1,394 round shot, 73 32-pounder round shot, 161 cannister shot, 122 stands of grape shot, 6 boxes of hand grenades, 35 muskets, 4 pairs of pistols, 15 swords, 30 cartouch boxes, 35 boarding pikes, and 12 rammers and sponges.

Linnet’s value was estimated at $55,000, and the cost of repairs was estimated to be about $2,500. Macdonough had inherited a leaking hull. The brig was in desperate need of repair: she was riddled with 30 to 50 shot holes, most of which probably came from the guns of the *Saratoga* in the last 15 minutes of battle. She had been taking on water fast, and by the end of the battle had over a foot of water above the lower deck. The masts, sails, rigging and yards were completely shot to pieces. Court martial records provide a list of *Linnet*’s battle damage (Appendix A, Figure 14).

In early October 1814, *Linnet* sailed south to Whitehall, New York, to be put in
ordinary with the rest of the squadron in a channel below town. On 28 February 1815, Macdonough ordered the ships dismantled. The guns, sails, ballast, powder, shot and stores were removed to shore for storage. The vessels were then whitewashed inside and out and roofed over. While in the process of breaking out Linnet's hull, Macdonough reported a quantity of ballast that was previously unrecorded. Included in this ballast were 2 long 18-pounders, 11 long 12-pounders, 15 heavy swivels, 542 32-pounder round shot, 495 6-pounder round shot, 187 12-pounder round shot and 3000 grape shot.

In a relatively short time the naval presence on the lake dissipated and much of the U.S. Navy's equipment was either auctioned off to help pay the war debt or placed in permanent storage. In March 1817, Captain James T. Leonard, commander of the squadron at Whitehall, reported that "the fleet at this station ... will require caulking from the waterline to the bends, their seams are very much open, if any casualty such as to cause a careen, to bring their seams in the water, would make it scarcely possible to keep them afloat, it has required much care to keep them on a even keel." In early April of that same year, Leonard reported one instance of Linnet grounding, and at the time called her "a vessel of the lightest draft of water." At this time, the vessels were not in the way of commercial shipping traffic on the lake, but this soon changed. By late 1819, the ships began to decay and in January 1820 Leonard reported that "the Saratoga, Eagle, Linnet and Ticonderoga are free of leaks, their timbers upon inspection appear yet to be good but each lately exhibits considerable spots of dry rot.
along the water line and ...on the outside planking." 225

By the summer of 1820, shipping activity had increased in Whitehall and the ragtag fleet, moored in the primary shipping channel, was blocking passage of commercial vessels. The decision was made to move the squadron to an area known locally as East Bay, actually the mouth of the Poultnay River.226 \textit{Linnet} stayed afloat for a short while and in 1825 was to be auctioned off by the government with the rest of the squadron. No bids were received, however, and the brig eventually sank at anchor, along the New York bank of the Poultnay River sometime around 1825.227 \textit{Linnet} remained there for 124 years, attacked only by rot, ice and the occasional firewood seeker.
CHAPTER VII

WHITEHALL, NEW YORK, 1949

In late September 1949, Fred Stevens, a farmer from Whitehall, New York, got an idea. His property lay alongside the Poulney River, and Stevens, as well as everyone else from the area, knew about the old wrecks in the river. Everyone who grew up around Whitehall, at one time or another, had played on the wrecks as children and there were many stories of cannonballs, cannons and other relics discovered in the area. Stevens’ idea was to pull one of the wrecks from the river, recover the cannonballs and sell them. Since he did not have a tractor, he approached the Galick brothers, Tony, John and Steve, whose property lay along the Vermont side of the Poulney River.\(^{228}\) The wreck they chose was thought to be a 75 foot long battleship, of French construction, dating to the Revolutionary War.\(^{229}\) This was not a Revolutionary War vessel, but the United States Navy brig *Linnet*.

Early one evening in the first week of October, a small group gathered and the farmers hooked two steel cables around some of *Linnet's* main timbers. Using horses and three tractors, they dragged her from the New York to the Vermont side of the river and up onto the bank (Appendix A, Figure 15). While doing so, the forward section of the hull broke off, and according to Mr. Galick, floated away down the river (Appendix A, Figures 16 and 17).\(^{230}\) The rest of the hull spun around so that the bow now faced the opposite direction - down river - unlike the orientation of the rest of the squadron.
on the New York bank.

Over the course of the next few weeks, hundreds of artifacts and timbers were removed from the hull (Appendix A, Figures 18 to 20). The *Whitehall Times* picked up on the event and the October 20 headlines reported a "colonial warship" raised in East Bay. According to the paper, over 350 cannonballs "filled with gunpowder" were discovered, plus 105 solid shot, 38 bar shot and 6 exploding bombs. Over 300 people visited the Galick farm to look over the relics. According to the Galicks, the area between the frames was filled with cannonballs, and Ray Stevens sold this shot for "two dollars a pop." Round shot and other pieces of the wreck were also sold at an antique shop in Ticonderoga, New York, for many years. One interesting artifact discovered in the hull was a copper token, located in or near the mainmast step. It bore the date 1812 and the inscription, "Trade and Navigation" on one side, and on the other side, "half penny token." The American Numismatics Society of New York identified this coin as an 1812 half-penny from Canada.

Among the artifacts recovered were two eight-foot-long, 9-pounder cannons minus their trunnions, a split mortar and a 6-½-foot-long cannon weighing 1,200 pounds (Appendix A, Figures 21 and 22). The cannon and mortar had probably served as ballast aboard *Linnet*. The two 9-pounder cannon and split mortar were sold to Fort Ticonderoga and put on display on the parade grounds. The third cannon was sold by three local families to the Mount Hope Society, whose historic property was near the town of Ticonderoga, New York. This society eventually sold the Mount Hope property
to Fort Ticonderoga.236 The mortar turned out to have an interesting story. This British mortar, left at Fort Ticonderoga after the French and Indian War, was taken to Boston by Henry Knox, Washington's commander of artillery, during the American Revolution and returned to the fort in the spring of 1776.237 The mortar probably split during test firing in 1776 and was placed in an American gunboat as ballast.238 The gunboat was subsequently captured by the British who kept the mortar at Isle aux Noix until it was used again as ballast aboard \textit{Linnet}.

Although many toptimbers deteriorated through the years due to exposure and firewood seekers, the majority of damage to the hull and loss of timbers resulted from the salvage attempt. When the bow broke off and floated away down the river, there was still a 58 foot length of the hull remaining, consisting of floor timbers, futtocks, both planking and ceiling, a section of the stern assembly, the main mast step and another step or mortise which was possibly for the windlass. The ceiling and stern were entirely removed or dismantled during or after the 1949 salvage attempt. At the time of the excavation in 1995, only 23 floor timbers and three starboard futtocks remained. The block of wood abaft the mainmast step (possibly a step for the capstan) may have been yanked from the keelson when the farmers tried to remove the cable. Some of these timbers were collected and sold to an antique dealer in Rutland, Vermont, and others were reportedly bought by a furniture maker, although no evidence exists that this transaction took place.239

Many of \textit{Linnet}'s timbers, including a piece that is probably a section of
keelson, were purchased and displayed at Fort Mount Hope in New York (Appendix A, Figures 23 and 24). The timbers were placed under an outdoor shed and the following rather erroneous sign:

Colonial Gunboat Ruins

This ship was raised from Lake Champlain in 1953. On it were found 408 cannonballs, 78 bar shot, 10 exploding shells, 3 cannon, 2 brass mortars and many other articles of war. The ship was very crude and was made from green oak timbers. Only part of the ship was salvaged as it broke apart while being raised. The identity of this ship is not definitely known. It could have been one of Arnold’s fleet that fought at Valcour in October, 1777.

Fort Mount Hope Society

The only parts of this that are correct are the statements that they do not know the ship’s identity, and that it broke apart while being raised.

New York State authorities were sent out to investigate the hull, since it had been illegally moved from one state to another, and was claimed by New York. During the investigation, photographs were taken documenting the state of the wreck and the other ships of the squadron in the river. During low water, some of these hulls were visible below the water surface or actually protruding into the air. The state authorities placed “No Trespassing” signs on the remainder of the hulls. The degree to which Linnet’s hull was sifted for artifacts can be seen in many of the previously mentioned photographs. The mud between the frames was completely cleaned out, exposing the inner surface of the planking (Figures 18 and 19).
The archival photographs were helpful in identifying some of Linnet's timbers during the archaeological excavation, as well as determining the bow and stern of the wreck. Other features are easily seen in these photographs such as the mast step, keel, keelson and deadwood (Appendix A, Figure 25). One can also see how the hull was twisted and the effects of the salvage effort on the bow and stern. All the loose floor timbers, futtocks and planking were removed leaving Linnet a mere skeleton of the brig she once was.
CHAPTER VIII

ARCHAEOLOGY

On July 23, 1981, the remaining timbers of Linnet were rediscovered by Kevin Crisman and Arthur Cohn during an archaeological survey of the Poultney River. Identification of the hull was made by comparison of overall dimensions and scantlings with those of other War of 1812 vessels on Lake Champlain. Linnet was known to be significantly shorter and smaller than Ticonderoga, Eagle, Saratoga and Confiance. The discovery and identification of Linnet, Eagle and one American gunboat in the Poultney River led to several seasons of archaeological excavation and resulted in a thesis and 1987 publication on the brig Eagle.

Objectives and Methodology

Linnet was one of two vessels excavated by the 1995 Lake Champlain Nautical Archaeology Field School. For the duration of the three week excavation, July 11 through July 31, the field team was divided into two groups on opposite shores of the Poultney River. The group on the New York side excavated the hull of the gunboat Allen, while four to five divers on the Vermont side worked on Linnet. The surviving hull of Linnet lies opposite its original resting place. The stern points upriver, unlike the orientation of the brig Eagle and gunboat Allen (Appendix A, Figure 26). After the salvage of 1949, Linnet's hull settled back into the river with a pronounced list to port.
and a severe longitudinal twist. The forward end lies in water perhaps 10 feet deeper than the stern. Overall, the vessel has a severe list of 36 degrees in the stern end due to twisting and a list of about 14 degrees in the forward end.

In general, the hull was not well preserved. The 1949 salvagers did considerable damage, breaking off the bow of the ship when pulling it across the river. Consequently, we discovered an incomplete stern and very little of the bow. All the frames from the stern section are missing and, of the entire starboard side, only three futtocks remain. Most of the missing frames and futtocks ended up at Fort Mount Hope in the early 1950s, but a few may have floated away with the bow or been removed by local residents as souvenirs.

All that remains of Linnet is 58 feet (17.7 m) of the keel, from the base of the sternpost to just forward of amidships, with floor timbers along the surviving length of the keelson (Appendix A, Figure 27). The remaining starboard (Vermont bank) frames were numbered from the stern forward as 1 through 23. During the exceptionally low water conditions of 1995, Frames 1 through 9 projected out of the water (Appendix A, Figures 28 and 29). On rare days of good visibility, part of the after keelson, the after keel section, and the deadwood and mast step were visible from the bank. An extensive search for the missing bow and stern sections was performed along the opposite bank and through the river channel, but neither section was located.

The main objective of the Linnet excavation was to record hull form and timber dimensions and arrangements so that an accurate plan of the wreck could be prepared
and a reconstruction of the vessel attempted. The wreck was recorded in imperial units (feet and inches) rather than metric, because *Linnet* was built with the imperial system and any patterns in construction would likely appear in feet and inches. A total of about 160 hours of diver time was spent uncovering and recording *Linnet*’s hull. Sediment was removed with an induction dredge and by hand-fanning. The highly disturbed nature of this site made it unlikely that any small finds would remain except between the frames. This fact, along with the knowledge that exposed ship structure can provide a finer control of provenience than a typical grid, prompted us to use the ship’s frames as a reference system for the excavation. The wreck plan indicates the extent of the excavation, which included most of the starboard side and the stern section. Only the space between every other starboard frame section was completely dredged out; planking is extended in the wreck plan for the sake of continuity.

The keel, keelson, frames, futtocks and mast step were the focal areas during the excavation. Although small finds usually play a large part in the interpretation of a site, the 1949 salvage effort cleared the hull of the majority of artifacts. Only a few objects were recovered in 1995; they are discussed in the section on small finds. The excavated data, in combination with the historical data, made it possible to determine some construction details and to propose a conjectural set of lines for *Linnet*. These results will be discussed after the data presentation.
Summary of Field Work

During the first week of the project, the shores of the Poultney River were prepared for the excavation team. Modern litter was cleared and an appropriate work area was created out of the surrounding shrubbery that included a space for the crew, data processing, equipment storage and a safe access ramp into the site (Appendix A, Figure 30). The site was examined and dredging began immediately to clean Linnet's starboard side. Overburden was deep as one approached the bow and was generally empty of small finds except for a few centimeters above the timbers. Tree limbs, decaying plant matter, fishing line and hooks, broken beer bottles, cans and other garbage were amply distributed over the entire length of the hull. This made for somewhat hazardous work since the visibility was usually no more than about five to six inches (13 to 15 cm).

The frames on the starboard side were completely uncovered and excavation between every other frame section began. Ceiling, bilge stringers or other longitudinal members were not found on the starboard side. The keel and part of the after deadwood extended 14 feet (4.3 m) aft of Frame 1. Excavation and recording of the after keel section, keelson and mast step began the first week. Several small and deteriorated timbers, possibly from Linnet, were also discovered and excavated on shore.

Shortly after the beginning of the excavation we were visited by local people who not only provided information about the 1949 raising, but also related colorful folklore about the ships in the Poultney. Most thought the vessels were from the
Revolutionary War and Benedict Arnold’s name came up regularly.

During the second week, we began recording the curvatures of every other frame on the starboard side of the hull. A total of 23 floor timbers were found, as well as the first futtocks for the three frames at the forward end of the wreck. Dredging between frames and frame measurements continued on the starboard side all week. Timbers found on shore were completely excavated and the deadwood recording was completed. The overburden was found to be so deep in the forward end of the hull, and the slumpage rate of the coarse sand river bottom so high, that we constructed bulkheading around the last few frames to keep sediments from settling in over the excavated timbers. This was constructed from two square pieces of plywood and some two-by-fours. A total of 58 feet (17.7 m) of the originally 85-foot-long (25.9 m) vessel were discovered. The missing 27 feet (8.2 m) included a short section of the stern and most of the bow.

Soon after the beginning of the second week, it became apparent that the goal of excavating the port side would not be fulfilled. The overburden there was even deeper than on the starboard side and consisted of fine, thick clay which made dredging a difficult and lengthy process. With each of the four team members diving twice daily for nearly two hours at a time, an estimated three weeks would have been required to mirror the full excavation on the port side. Due to limited time, only one section on the port side — between Frames 1 and 2 — was investigated and that only briefly, with no measurements recorded. While exploring the excavated port section, a chock, or filler
piece, was discovered in the top of the first futtock for Frame 1 (Appendix A, Figure 31). Most of the remaining excavation time was spent examining the condition of the hull and determining details around the broken keel under Frames 19 through 23.

By the end of the third week, the starboard frame dimensions and hull curvatures were completely recorded, and the longitudinal curvature of the keelson was also recorded to determine the extent of hogging or sagging. Notches in the bottom of the keelson over each frame were measured and the forward ends of the broken keel and the keelson scarf were more thoroughly excavated and examined. It was determined that the keel had broken off under Frame 19, splintering the garboard strake. This resulted in the complicated picture of the keel, keelson, and garboard at Frames 21 and 23.

The after deadwood section was found to be very loosely attached to the keelson and was carefully removed for detailed measurements (Appendix A, Figure 32). In doing so, we noted that the wood floated, and was probably softwood rather than oak. Wood samples were taken in one inch square blocks from the deadwood and other timbers for identification. All samples were identified as either red (Quercus rubra) or white oak (Quercus alba) with the exception of one pine plank and the deadwood, which was indeed fashioned from white pine (Pinus strobus). 244

After the 1949 salvage, some of Linnet's timbers had been acquired and put on display at Fort Mount Hope in Ticonderoga, New York. This land later became property of Fort Ticonderoga, which also houses the two cannons and split mortar
recovered from *Linnet*. These two trunnion-less cannon and the split mortar, carried as ballast in 1814 and sold to the fort in 1949, were located on Fort Ticonderoga’s property and recorded after the conclusion of the field season (Appendix A, Figures 33 and 34). At this time, remaining team members traveled to Mount Hope and Fort Ticonderoga and in three days also recorded a total of three floor timbers, eight futtocks and 14 miscellaneous timbers and planks. These were in extremely poor condition, having been subjected to the extremes of New England seasons for 46 years under only a simple scrapwood shelter (Appendix A, Figures 35 to 37). The Mount Hope timbers were measured with goniometers, photographed and safely stored away from the elements in a replica block house on the property.

Throughout the season, black and white photographs, color slides and video were used to document both the excavation activities and individual timbers and artifacts. A total of 25 rolls of film and three videotapes comprise the photographic record. Due to poor visibility and limited time underwater photography was not attempted.

Hull Condition and Construction

Keel

The remaining keel is made of one piece of white oak. The keel bottom and both ends in the wreck plan are conjectural. The forward section was broken off somewhere under Frame 19 and the after end appears to have been sawn off. The top of
the keel, where it could be examined in the stern, is relatively flat with curvature and twisting over its length. The total length preserved was 58 feet (17.7 m) but only the aftermost 8 feet (2.4 m) and forwardmost 6 feet (1.8 m) were recorded in detail. Both ends had similar molded dimensions of 13-\(\frac{1}{2}\) inches (34.3 cm) so this was assumed to be the same throughout. In the after 14 feet (4.3 m), the keel top narrowed from 8-1/4 inches (21 cm) sided to 3-3/4 inches (9.5 cm) sided, retaining the rabbet to the end. The single rabbet line on the wreck plan is conjectural, although it is based on an average of dimensions taken at the frame sections where loose or missing planking permitted access to the keel.

Deadwood

This piece, of white pine, is badly deteriorated, making the original shape difficult to discern. The remaining deadwood measured 9-1/2 feet (2.9 m) in length, and was bolted to the keel 3 feet, 11 inches (1.2 m) abaft the after end of the keelson. It is molded up to 10 inches (25.4 cm) and sided from 3 to 7 inches (7.6 to 17.8 cm). It was attached to the keel by three iron bolts, but by 1995 had worked loose and was easily lifted off. The top, which may be a scarf for a stern knee, has two 6 inch long (15.2 cm) grooved channels running longitudinally in it starting three feet abaft the forward end of the deadwood. These are recessed only a few centimeters and have widths of approximately 1 inch (2.5 cm) and 1/4 inch (.6 cm) respectively.
Frames and Futtocks

A midship frame was not identified during the excavation, for there was no significant difference in scantling or placement between any of the frame sections. Frames were spaced fairly evenly, from 18 to 24 inches (45.7 to 61 cm) center to center. On initial examination a simple alternating pattern seems to exist, of more closely spacing three to four frames and then more widely spacing the next small group. In general, the spacing differences are not great and some of the more widely spaced sections are actually beneath the mast step, an unlikely construction pattern if strengthening the hull at the mast was an issue.

Twenty three floor timbers and three futtocks were examined on the starboard side, with detailed measurements recorded from nearly every other frame (Appendix A, Figures 38 to 41). Their preservation improved farther forward but those near the shore and in the shallow water aft were highly deteriorated and damaged due to natural decay and souvenir seekers. Evidence of axe and saw use was noted on Frames 2, 3 and 8; these marks almost certainly post-date the sinking. Wood samples from floor timbers and futtocks were identified as white oak.

On average floor timbers were sided 7 to 9 inches (17.8 to 22.9 cm) and molded 9 to 10 inches (22.9 to 25.4 cm), varying in outboard length from 3 to 8 feet (0.9 to 2.4 m). These timbers all appear to be made from compass timber and were sawn along the grain; no chocks were found on the starboard side. The one port side futtock excavated in 1995 appeared to be fashioned from naturally curved compass wood but was ill-
shaped or inadequate in dimensions, requiring the chock to better fit the ceiling planks
to the frame. This chock was fastened to the frame with a treenail. The floor timbers,
bolted once to the keel, had evidence of other fasteners including both treenails and
iron spikes. The latter were used to fasten the ceiling. The treenails, most of which
were represented by empty holes, may have been used to attach thick stuff to the ceiling
and frames. These, for the most part, were in a line 30 inches (76.2 cm) from the
keelson, although those at Frame 6 and in the futtock for Frame 20 varied in outboard
distance from this line. Limber holes are not always present; Frames 3 and 15 had none
and several others were not cut square. Those present were located approximately 3
inches (7.6 cm) outboard from each side of the keel (two limber holes per floor timber),
were square in shape and 3 inches (7.6 cm) in width.

Futtocks were placed on the after side of the floor timbers with their heels
approximately 1 foot (30 cm) from the keelson and through bolted longitudinally to the
floor timbers, much as on the American schooner Ticonderoga.245 Although no
longitudinal fasteners were found among the excavated timbers, futtock MH13 at
Mount Hope was preserved with an iron bolt protruding from the side and this was
probably the same fastening system used throughout the hull. Some of the missing
starboard futtocks, as well as three floor timbers, are among the timbers at Mount
Hope.
Keelson

The surviving keelson is 44 feet (13.4 m) long and made from a single piece of white oak. Generally, it was well preserved except for a highly deteriorated area on the upper surface under the mast step. This timber ranged from 6 to 8-½ inches (15.2 to 21.6 cm) sided and 11-1/4 to 12-½ inches (28.6 cm to 31.8 cm) molded. Rough notches in the bottom of the keelson were cut to fit over the floors. These varied in depth and were not consistently present. No notches were located for Frames 5 through 8, which are those directly under the mast step. These notches appear to be a British shipbuilding trait as they are not evident on American warships from 1812 (Eagle, Ticonderoga, Allen, Jefferson) but are present on Tecumseth, Nancy and the Mallorytown gunboat.²⁴⁶

Both ends of the keelson appear to be scarfed. The forward scarf is flat and measures 5 feet (1.5 m) in length. The after scarf is also flat and measures 4 feet, 3 inches (1.3 m) in length. Fasteners in the keelson consisted of spikes, bolts and treenails. Spikes did not appear to be in any particular pattern but were randomly placed along the top of the keelson. A single treenail was found in the forward scarf. Bolts were used to fasten the keelson to floor timbers at every other frame down the center line of the keelson. Frame 1 was fastened with two bolts through the keelson; this was also at the beginning of the after scarf.
Mast Step

The mast step was a separate timber fastened to the top of the keelson (Appendix A, Figures 42 to 44). It is the mainmast step, located a third of the vessel’s length forward of the stern of the ship. The step is in extremely poor condition and has loosened from its bolts. It measures 3 feet, 8-1/2 inches (1.13 m) long by 1 foot (30.5 cm) wide. It is a block of oak with a rectangular mortise in the center for the mast, reinforced by an iron bar on each side. The mortise measures 24-3/4 inches (62.9 cm) in length and 6-1/2 inches 16.5 cm) in width. The iron bars are 31-3/4 inches (80.7 cm) long, 3 inches (7.6 cm) wide and 3/4 inches (1.9 cm) thick. The bars are fastened to the step with two bolts per side. The step is connected to the keelson by six 7/8-inch-diameter (2.2 cm) iron bolts and four spikes, with three bolts and two spikes on each end of the wooden block.

Planking

Some planking was still attached to the starboard side of the frames. The ceiling was missing. The pine planks were consistently 2 inches (5.1 cm) thick, but varied between 10 inches (25 cm) and 1 foot, 10 inches (56 cm) in width. Seven strakes were identified between the keel and the starboard turn of the bilge. The garboards were securely fastened to the floor timbers and rabbeted into the keel. While excavating down to the keel under Frames 21 and 23, it was noted that the garboard strake had split into two pieces, probably due to the forces that broke the keel.
The strakes from Frame 20 through Frame 23 in the wreck plan appear a little disjointed, but these areas were very difficult to measure and their nonuniform appearance is caused by the break in the hull. Planks were fastened to the frames exclusively with iron spikes, many of which projected into the area between the frames although this is not evident in the wreck plan. Due to a lack of time, spikes were not recorded or analyzed for fastening patterns.

One interesting discovery in the planking can be seen on the forward section of the hull in the wreck plan. Two fist-sized holes were found between the futtock for Frame 22 and Frame 23. These holes were severely splintered and appeared to be made from the outside, with the widest diameter on the internal face. These are perhaps the result of damage from the 1949 raising. The upper hole was also within a double planked section or where a small block might have been placed. The doubling of planks can be more easily seen in the sectional views and could be due to post-war repairs or some form of internal partitioning of the hull.

Reconstruction of *Linnet*: A Hypothetical Lines Sketch

The archaeological data, even in concert with historical information, only allow for a very limited reconstruction of *Linnet*. The damage done to the hull over the years is extensive. While natural processes took their toll, much information that could have been used to help reconstruct the brig was lost in the fall of 1949 and following decades, and the presumably more extensive port side is too deeply buried for
examination without extensive dredging or cofferdamming. The American gunboat *Allen*, which was simultaneously excavated, did not have the mark of salvage efforts upon its hull and had more substantial remains, including the stem, stern and frames extending above the turn of the bilge. *Linnet* was not as fortunate. The hard data available for reconstruction is based on the 58-foot (17.7 m) section excavated, the intact floor timbers and futtocks, the mast step, deadwood and two timbers from Mount Hope that were found to match the curvatures of two of the *in situ* frames. This data was used to draw a hypothetical lines plan for *Linnet*.

No official lines or plans have been discovered for *Linnet* to indicate the shape of the hull, but there is a half hull model in Glasgow, Scotland that some have cited as Simons’ original design.\(^{247}\) A newspaper clipping dating from 1896, and dealing with the Glasgow International Exhibition’s Renfrew Exhibits, specifically mentions the work of Messrs. Wm. Simons and Company that are on display. The article mentions the brig *Linnet* that “the father of the present Mr. Simons built for the British Government in 1810.”\(^{248}\) This model is still on display in the Museum of Transport in Glasgow, Scotland, alongside a full hull model of a ship said to be *Confiance*. The dimensions given are 66-½ feet in length, 18 feet in beam and 10 feet in depth, measuring 300 tons. This information is inconsistent with both historical and archaeological data. In addition, the model appears to be a little too deep. Therefore, the Glasgow model is either an inaccurate rendition of the 1813-1814 *Linnet* or represents an entirely different ship.\(^{249}\)
Contemporary measurements of the overall dimensions of *Linnet* are derived from two sources: the United States Navy’s measurements after acquiring the brig as a prize and a statement of the brig’s dimensions in 1814 for the Royal Navy Board. U.S. Navy surveyors recorded dimensions of 82-½ feet on deck, 27 feet in beam and 6 feet, 8 inches in the depth of hold. A Royal Navy statement of the naval force on Lake Champlain in January 1814 lists *Linnet*’s dimensions as 85 feet in length and 26 ½ feet in breadth, which is very close to the U.S. Navy’s measurements. Howard Chapelle suggested that the shape of *Linnet*’s hull would be similar to an 1815 Admiralty draft for brigs to be built on Lake Champlain (Appendix A, Figure 45). The Admiralty draft lists the length on deck as 85 feet, the breadth as 28 feet, and depth of hold as 7 feet, 3 inches (Appendix A, Figure 46). These dimensions are too close to be ignored and many modern archaeologists and historians agree with Chapelle’s proposal that *Linnet*’s hull was similar to the 1815 draft. For the purpose of this study, the dimensions used to draw up hypothetical lines for *Linnet* are: 85 feet (17.7 m) in length, 27 feet (8.2 m) in extreme beam and 6 feet, 8 inches (2.0 m) in the depth of hold. The brig would have mounted sixteen long 12 pounders and measured about 350 tons burthen.

By comparing the body shape indicated by the archaeological data to that of the 1815 Admiralty draft, it is possible to determine something of the shape of *Linnet*’s hull and how closely the post-war design resembled it. If the archaeological data identically match the Admiralty plans, then the shape of *Linnet*’s hull would be the
same as that designed in 1815. This was not the case, although the differences are slight. As it turned out, the archaeological data suggest fuller body sections, making the vessel flatter floored than the Admiralty draft. In fact, the proposed body plan resembles drafts of gunboats often found on Lake Champlain. This is not due to *Linnet* being modeled after gunboats, but simply the fact that the vessel had to be built to the specifications for a brig of war and yet had to pass through the shallow waters of the Richelieu River. Even with these differences, the archaeologically-derived shape and historical information suggest that *Linnet*'s hull is close enough to the 1815 plan to use the latter as a guide for a general configuration. The proposed lines, therefore, are a combination of the archaeological data incorporated into a design based on that of the 1815 Admiralty draft (Appendix A, Figure 47).

Due to the lack of data beyond the recorded remains, my conjectural lines sketch has been kept very simple. Within the profile and half breadth views the excavated and recorded remains of *Linnet*'s starboard side have been outlined. Since the data do not extend above the base of the keelson, everything above this is hypothesized. In addition, as indicated in the body plan, no floor timbers extend past the turn of the bilge which is not enough information to draw even the first waterline of a conventional lines plan. In the half breadth view, the data do not extend further than 9 feet, 9 inches (2.97 m) beyond the keel; the shape beyond this is conjectural and reflects the lines of the 1815 Admiralty draft. The single buttock and waterline represent the extant data as much as possible but are primarily based on the general
shapes in the Admiralty draft.

The archaeological data, although limited in extent, nevertheless had a significant impact on the proposed lines. To accommodate the data, the beam and depth in hold were shortened, although these are still very close to those of the Admiralty draft. Based on the angles of deadrise for the available sections, the midship section (the widest part of the hull) was determined to be at what we designated Frame 17. No frames exist forward of midships and consequently no sections were hypothesized for the forward half of the vessel. The midships section is, however, very close in location to the Admiralty midships (ADM) and after noting this, the wreck plan easily fit the Admiralty draft longitudinally. The placement of Frames 1, 9, 13 and 17 and Mount Hope floor timbers and futtocks MH1, 2 and MH3, 4 are also indicated in the proposed lines. Section 16 (ADM16) from the Admiralty draft is indicated on the half breadth and profile views. This section and the Admiralty midships section most distinctly show the difference in body shape suggested from the comparison of Linner's archaeological remains to the Admiralty draft (Appendix A, Figure 48).

The shape of the hull, as seen in the body plan, is the most important result of the proposed lines. To obtain the body shape, information about the turn of the bilge must be available and none of the surviving hull extended to the turn of the bilge. Fortunately, six loose timbers from Mount Hope, consisting of floor timbers and first futtocks, were found to be useful. Timbers MH1 and 2, MH 3 and 4, and MH 13 and 14 were located near each other. MH 13 and 14 are probably from the aftermost part of
the stern and were not as useful in the reconstruction because nothing indicated their precise positions. The remaining two pairs worked as a frame set - with the floor timber and first futtock, thereby providing information on two curves that extend above the turn of the bilge to approximately 5 feet 9 inches above the baseline of the hypothetical lines drawing. MH 1 and 2 and MH 3 and 4 have curvatures that place them approximately at sections surrounding the Admiralty draft's section 16. With this information, it was possible to determine their approximate locations on the centerline and fit them into the hull reasonably well, which gave an indication of the hull shape. Compared to the American brig Eagle, the lines proposed for Linnet suggest a vessel with a much fuller run. Linnet's lines also show a vessel that is relatively flat-floored with little deadrise, a straight stern post and a length-to-beam ratio of 3:1.

Linnet appeared to be a well built ship, although of light construction. Most of the timbers were fashioned from local oak trees, including the surviving lengths of keel and keelson. All the in situ floor timbers and many floors and futtocks at Mount Hope were made from compass timber. Another indication of craftsmanship is in the notches in the base of the keelson made to fit over each of the floor timbers. This was labor intensive work but presumably strengthened the brig longitudinally. In sum, Linnet's construction indicates she was a well-built, although lightly timbered ship, whose lines perhaps pleased the men serving aboard her, for Macdonough remarked that the brig "is a remarkably fine looking vessel."
CHAPTER IX

LINNET'S SMALL FINDS

Study Assemblage Defined

Few artifacts were expected during the Linnet excavation and few were found. Before the ship sank in the Poultney around 1825 the U.S. Navy removed some material to sell or store elsewhere, and nearly all of the remaining material was removed during the 1949 salvage. Photographs taken after the salvage effort clearly show how cleanly the areas between the frames, and along the keel and keelson were picked over. Since the hull of Linnet was left out of the water for many days, souvenir hunters had plenty of time to gather relics.

Artifacts recovered from the site were labeled and recorded in the field and if diagnostic, were preserved at the Lake Champlain Maritime Museum’s conservation laboratory. Here, they were mechanically and chemically treated, drawn and photographed. The artifacts varied in both type and condition. Some items were in such poor condition that their values for historical analysis were questionable. Consequently, certain artifacts were not used in this interpretive study. Finds were excluded from analysis if they were determined to be modern (or at least not contemporary with the hull), natural formations, or unidentifiable and thus impossible to categorize. For a detailed description of the objects recovered from the wreck, the reader is referred to Appendix B.
Table 1 indicates the six different materials represented in the total assemblage from 1995: metal, stone, wood, leather, bone and charcoal. With the knowledge of other artifact assemblages from War of 1812 and other shipwrecks in this part of Lake Champlain, these categories, with glass and ceramics, were deemed the most likely to be found. The raw totals per material, number of finds excluded, total remaining in the working assemblage and individual type percentages within the working assemblage are also listed. The working assemblage is the total number of artifacts used for analysis.

TABLE 1

ARTIFACTS RECOVERED IN 1995 FIELD SEASON

<table>
<thead>
<tr>
<th>ARTIFACT</th>
<th>RAW TOTAL PER TYPE</th>
<th>EXCLUSION S</th>
<th>WORKING ASSEMBLAGE</th>
<th>PERCENT IN TOTAL Working Assemblage (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>91</td>
<td>21</td>
<td>70</td>
<td>89.7%</td>
</tr>
<tr>
<td>Stone</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2.6%</td>
</tr>
<tr>
<td>Wood</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>7.7%</td>
</tr>
<tr>
<td>Leather</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-----</td>
</tr>
<tr>
<td>Bone</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-----</td>
</tr>
<tr>
<td>Charcoal</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-----</td>
</tr>
<tr>
<td>TOTAL</td>
<td>105</td>
<td>27</td>
<td>78</td>
<td>100%</td>
</tr>
</tbody>
</table>
The overwhelming majority of the artifacts (89.7 percent) were metal finds, followed by a much smaller percentage of wood and stone. The leather finds were determined to be non-contemporary, and because the Poultney River is a favorite site for local fishermen and campers it is likely that the piece of charcoal is from a modern campfire. The bone artifact also appeared to be modern in origin and probably represents the remains of a meal eaten by recent campers. The wooden artifacts all appear to be Linnet-related, but the disturbed nature of the site and the fragmentary condition of most wooden objects limited their usefulness for artifactual analysis or hull reconstruction. The single exception is the chock, the function and position of which were discussed in the previous chapter. Stone finds consisted of a possible whetstone and a possible gunflint (Appendix A, Figure 49). The wood, bone, charcoal, and leather artifacts, and the whetstone, are described in the artifact catalogue (Appendix B), but do not easily lend themselves to further analysis by functional category.

In summary, the total number of artifacts from all six material categories is 105. Of these artifacts, 71 could be divided into three functional groups for analysis - fasteners, ordnance, and dress. As shown in Table 2, some of the finds were located within context of the site and others were not. The Non-Site Context group includes artifacts found on the opposite bank of the river during a survey (these may be associated with another ship’s hull) as well as two pieces of shot (L01-076 and L01-077) donated by the Galick family of Whitehall, Vermont. Since the latter were
collected during the 1949 Linnet raising their precise location within the hull is unknown.

TABLE 2

STUDY GROUPS: FASTENERS, ORDNANCE AND DRESS

<table>
<thead>
<tr>
<th>Group</th>
<th>Group Total</th>
<th>Non-Site Context</th>
<th>Site Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasteners</td>
<td>59</td>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>Ordnance</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Dress</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>71</td>
<td>5</td>
<td>66</td>
</tr>
</tbody>
</table>

Fasteners

The majority of identifiable small finds are metal fasteners, which like the majority of the artifacts were located near the keel and the bases of the frames. It makes sense that this area would have the highest concentration of finds due to the settling of material in the ship's bilge. In fact, out of the 56 fasteners, 37 were located within the first two feet (60 cm) outboard from the keel. The remaining third (19) were either found with the dredge (their precise location unknown), or were found further out along the ship's hull.

The types of fasteners discovered on Linnet include spikes, nails, bolts and one possible example of a staple. As indicated in Table 3 on the following page, most of the
finds were of iron (57 out of 59) with only two examples of copper alloy. The staple (L01-050) is singular and probably modern. The table lists numbers of the total spikes and nails including identified fragments. For spikes, the head style is also differentiated between rosehead and T-head. These designations are for spikes only. Unknown style indicates fragments of spikes or nails where the diagnostic features are not visible or do not exist due to poor preservation.

TABLE 3

FASTENERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>TOTAL IRON</th>
<th>TOTAL COPPER</th>
<th>ROSEHEAD STYLE</th>
<th>T-HEAD STYLE</th>
<th>UNKNOWN STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIKES</td>
<td>27</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>NAILS</td>
<td>28</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>7</td>
</tr>
<tr>
<td>BOLTS</td>
<td>1</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>STAPLES</td>
<td>1</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A total of 28 spikes and spike fragments were recorded, all but one of iron. Spikes are differentiated from nails by size; they tend to be larger in the head, shank, and overall length. For example, spike shanks averaged 1/4 inch (.6 cm) in diameter and their square heads measured from ½ to 3/4 inches (1.3 to 1.9 cm). Nail shanks averaged about 1/8 inch (.3 cm) and tapered to a point. Spikes also measured anywhere
from 4 to 10 inches (10 to 25 cm) in length but nails were never more than 3 inches
(7.6 cm) long. Two diagnostic types make up the spike sample: rosehead and T-head.
An example of a rosehead spike, L01-042, can be seen in Appendix A, Figure 50. The
heads are slightly concave on top with the corners bent down on each of the four sides,
leaving a little indented button on the top. Rosehead shanks vary in section (both
square and round) and average 1/4 inch (.64 cm) wide at the top, but the heads are
square and typically measure about 5/8 inch (1.6 cm). Twelve rosehead spikes were
found.

An example of T-head spikes, L01-032, is also shown in Figure 50. From the
side view, it appears as if the spike’s head forms the outline of the letter T. Three T-
head spikes were found. The heads of these spikes are between 1/4 and 3/4 inches (1.3
cm and 1.9 cm) across with variably sized shanks, averaging 3/8 inch (.95 cm) at the
top and tapering towards the point. The remaining 12 spikes were so poorly preserved it
was impossible to identify their type. On Linnet, spikes were used to fasten planking to
the frames and the mast step to the keelson. They were also prominent on the inboard
side of the frames, suggesting their use in fastening ceiling to the frames. One spike
was found near the forward end of the hull connecting the garboard to the keel.

A total of 29 nails were recovered during the excavation; all but one of these
were iron. Seven were too poorly preserved to identify major diagnostic features. In
general, the iron nails had rectangular heads and shanks, the latter of which varied a
little in cross section (averaging 3/16 to 1/8 inch [0.5 cm to 0.3 cm]) and tapered
towards the point. The one copper nail's head differed from the iron nails; it was
formed by a ninety degree bend in the shank. The copper nail (L01-012) and examples
of several other nails can be seen in Appendix A, Figure 51. All nails were found
loose in the bilges. They could have been used for a variety of purposes, including light
joinery work with ladders, bulkheads and other internal features.

Bolts, some of the largest metal fasteners, are made of iron, have round shanks
(without taper) and heads and are used in heavy joinery. An example of a bolt (L01-
037), can be seen in Figure 52 of Appendix A. This was the only detached bolt found
during the excavation, but many more were located in situ. It is 8 inches (20.3 cm)
long, apparently broken off mid-shank, with a shank diameter of 3/4 inch (1.9 cm) and
a head diameter of 1-1/4 inch (3.2 cm). Bolts on Linnet connected the keelson to the
frames and frames to the keel, held the mast step to the keelson, and were also used in
the deadwood construction. Holes along the inboard side of some of the frames suggest
that bolts may have been used to join thick stuff or foot wales to the frames.

Some interesting comparisons can be made between Linnet's fasteners and
those from another War of 1812 vessel. Excavation of the American brig Eagle
produced many types of fasteners, some of which bear no resemblance to those found
on the hull of Linnet.257 Eagle's fasteners included square iron bolts but no copper-
alloy fasteners. Nails and a round iron bolt on Eagle are generally similar to those on
Linnet in shape, size and head form. It is in the spikes, and specifically their heads, that
most of the differences occur. Spikes on board Eagle are characterized by having the
four corners of the spike head angle down "leaving a square-shaped flat surface in the center of the head," as in Figure 53 of Appendix A.

Although one example resembles a T-head spike like those found on Linnet, there are no spikes at all possessing anything similar to the rosehead design. Simons' contract to build the brig did specify that the spikes, bolts and iron work were to be supplied by the British government. Rosehead spikes are probably a design reflecting manufacturing techniques in England, although the possibility that they were made by a local forge cannot be ruled out.

Ordnance

Ordnance was defined as "all war-like stores" by the British military of the 19th century and generally was used to refer to mounted guns. Ammunition is a type of ordnance, and is defined as "a projectile, propellant and ancillary component used to induce the propellant to eject the projectile from a piece of ordnance". Round, cannister and shell shot were common types of ammunition, while bar, grape and chain shot were specifically used at sea. Several types of ordnance, including ammunition, were recovered during the excavation of the brig Linnet and appear in Table 4 on the next page. The cannister shot (076) and grape shot (077) were among the sample donated by the Galick family of Whitehall, New York. Salvaged from Linnet in 1949, their exact provenience is now unknown. Figures 54 and 55 in Appendix A depict examples of the shot and the coxkscrew respectively.
TABLE 4

ORDNANCE

<table>
<thead>
<tr>
<th>ARTIFACT</th>
<th>DIMENSIONS</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musket Ball (-008)</td>
<td>.63 inches diameter</td>
<td>Lead</td>
</tr>
<tr>
<td>Musket Ball (-022)</td>
<td>.65 inches diameter</td>
<td>Lead</td>
</tr>
<tr>
<td>Musket Ball (-026)</td>
<td>.56 inches diameter</td>
<td>Lead</td>
</tr>
<tr>
<td>Musket/Pistol Shot (-046)</td>
<td>.30 inches diameter</td>
<td>Lead</td>
</tr>
<tr>
<td>Grape Shot (-025)</td>
<td>1 1/8 inch diameter</td>
<td>Iron</td>
</tr>
<tr>
<td>CockscREW (-036)</td>
<td>------</td>
<td>Iron</td>
</tr>
<tr>
<td>Grape Shot (-049)</td>
<td>1 3/16 inch diameter</td>
<td>Iron</td>
</tr>
<tr>
<td>Cannister Shot (-076)</td>
<td>1 inch diameter</td>
<td>Iron</td>
</tr>
<tr>
<td>Grape Shot (-077)</td>
<td>11/4 inch diameter</td>
<td>Iron</td>
</tr>
<tr>
<td>Flint (L02-001)</td>
<td>------</td>
<td>Stone</td>
</tr>
</tbody>
</table>

The shot recovered during the *Linnet* excavation represents a variety of weapons. The vessel was equipped with sixteen long 12-pounders during the War of 1812. Seamen also would have used small arms such as pistols and muskets. These items are reflected in the finds, meager though they may be. With the exception of the sprue on two of the lead balls, no markings or identifiable features can be observed. The smallest lead shot, .3 inches (.76 cm), is representative of that used in pistols. The lead balls with an average diameter of a little over ½ inch (1.3 cm) are ammunition for
shoulder arms. Three examples of these musket balls, all of .6 inch (1.5 cm) diameter, were discovered during the study of the *Eagle's* hull.²⁶¹

Both cannister and grape shot are anti-personnel projectiles, designed for use at 100 to 300 yards.²⁶² The 1-inch-diameter (2.5 cm) cannister shot was identified by the Gallicks, who still possessed the remnants of the cylinder they took it from. In comparison, twelve cannister shot were discovered on *Eagle*’s hull, all around 7/8 inch (2.2 cm) diameter. Cannister shot was made by filling a tin cylinder with shot, securing the top with tin and the bottom with sheet iron. Wooden plugs were sometimes used at the top and bottom. This was fired as a unit from a carriage gun and broke up and spread in flight. The grape shot recovered during the *Eagle* study measured 2.2 or 2.7 inches (5.6 or 6.9 cm) in diameter and were larger than either the cannister or the grape shot from *Linnet*.²⁶³ According to Bill Galick, the grape shot recovered from *Linnet* in 1949 was still wrapped around its iron spindle.²⁶⁴ Grape shot was made by stacking cast iron balls around an iron spindle, or on a wooden spindle and discs wrapped in cloth. This was then fired as a unit. For the long 12-pounders on board, nine grape shot would have made a “stand” and the weight and diameter of that stand would have equaled the weight and diameter of the shot, or 12 pounds (26.4 kg) and 4.4 inches (11.2 cm).²⁶⁵

The single example of a cockscrew from a musket lock was found during the excavation, and is a highly diagnostic feature of muskets. It is the screw which clamps the upper jaw of the cock down onto the flint and helps to hold the flint firmly in place. Over time, the shape of the cock tang and screw have changed. Fortunately, although
preservation was poor, it is still possible to narrow down which musket pattern this example may have come from. There are several points to keep in mind. In 1809 the throat of the cock began to be reinforced, but this cockscrew’s neck is not; it is the simpler and older gooseneck variety.266 Also the cockscrew’s head is pierced but not slotted on the top, and this is indicative of the two later Short Land, New Pattern muskets (introduced in 1769 and 1775 respectively),267 which gave rise to the India Pattern. Using the cockscrew as the diagnostic feature, the three possible musket types that this cockscrew could represent aboard the \textit{Linnet} are either an old Short Land, New Pattern Musket, (Type 3 or 4), often called the “Second Model Brown Bess”, or a pre-1809 India Pattern Musket.

The Second Model Brown Bess was basically a modified Marine or militia model with a 42 inch barrel and .75 caliber bore. Type 3, of high quality workmanship, developed in the 1780’s as more muskets were manufactured with private contract gunsmiths. Type 4 came into use in the mid-1790’s and remained the standard issue by the Ordnance Board until the India Pattern developed. The India Pattern was shorter, with a barrel length of only 39 inches.268 Interestingly, all of these are land guns; the sea service muskets (circa 1760) were not considered here because they were known to have a pierced and slotted top jaw screw.269 Unless the slot in the screw has deteriorated to the point where it is no longer recognizable, none existed in the first place, which would make it appear that the Lake Champlain force at Isle aux Noix was issued outdated British Army weapons. This could have been the case since the best ordnance,
like the best manpower, was reserved for European campaigns of the time. The only difficulty with this scenario, however, is the length of service time for these weapons, which averaged 12 years. If this coxcomb was indeed from a musket issued to a crew member of the *Linnet* for the Lake Champlain region and the War of 1812, as is likely, the Brown Bess Models would have been too old for service. This suggests that the most probable musket type represented by this screw would be a pre-1809 India Pattern.

Dress

The two artifacts associated with dress or uniforms are those copper alloy buttons designated L01-021 and L01-066. The former is not very useful in this study since it consists of only the base and thread loop. The latter, however, as depicted in Figure 56 of Appendix A, can be used to determine what kind of uniform it came from and narrow the possibilities of who would have worn this. The anchor design on the button resembles many British button designs even though it lacks the Crown and oval that were standard on many Royal Navy buttons. There are no marks indicating it is U.S. naval issue. There is, unfortunately, a great deal of contention and uncertainty surrounding early British naval buttons, specifically those of lower ranking officers. The design on this button did not match any found in the reference works consulted, and the possibility exists that this was a design indigenous to the Provincial Marine of Canada, or that it could have been from an American uniform. I suspect, however, that
since more British seamen and Marines served on *Linnet*, and for a greater time than did American sailors, the button is likely from a Royal Navy or Marine uniform.

When naval uniforms were first officially authorized and standardized by the King in 1748 they were for officers only. In 1807, gunners, bosuns and carpenters were authorized to wear the master's uniform, and the button could be from one of these. The common sailor's uniform was not standardized until much later, in 1857. 271 By the late 18th century many higher ranking officers had buttons with the fouled anchor drawn within an oval. According to Parcs Canada archaeologist Genevieve Duguay, however, an illustration of Admiral Horatio Nelson at Trafalgar (1805) shows him wearing gold-plated buttons with an unadorned anchor motif, suggesting some higher ranking officers' buttons from this period still bore this simple design. 272 Duguay also stated that most of the buttons recovered in excavations at Isle aux Noix are engraved with the cable and anchor on pewter or copper-alloy material. An in depth study of this collection has not yet been carried out. 273 From the late 18th century on, all officers uniforms and buttons became much more elaborate. 274 If this artifact is indeed from the Royal Navy, Royal Marines or Provincial Marine, it could have come from any of the ranks.

The original uniform and possible owner of this button are difficult to pinpoint. Even within the lower ranks, buttons underwent design changes. In 1787, naval buttons changed from simple smooth domed types to an engraved anchor design. 275 One source indicated that the buttons on the coats of midshipmen did not
change from 1787 to 1890. Another indicates that until 1812, midshipmen were wearing 1774 issue captain’s buttons. While this button design originated in 1787, the dates of manufacture could span decades as this type was slowly moved down the ranks in favor of more elaborate designs for higher ranking officers. Even though one source indicated that the midshipmen wore the 1774 Captains’ (pre-anchor) design button from 1787 to 1812, the appearance of early uniforms is still being debated. A closer examination of the Isle aux Noix and other collections may lead to the proper identification of this button’s uniform and thus, the owner’s rank, although the renowned variation in Royal Navy uniforms will probably make this impossible.

Summary

The study of the artifacts recovered during the 1995 archaeological excavation of the Linnet does not contribute very much to an understanding of the ship. The type of fasteners provides some information, but a more detailed recording and analysis of fastener placement patterns is required to bring to light further details on hull construction. When compared with a contemporary American-built brig, it is apparent that some differences in fastener typology exist, and these are probably due to manufacturing techniques. The ammunition represents typical ordnance of the period. The variety of shot carried as ballast, as well as the Revolutionary period mortar and two trunnion-less cannon, together suggest that the supply of iron in North America was indeed limited to whatever lay at hand.
The identification of the button, the cockscREW, and its associated musket style are more useful in providing information about the crew and armament aboard Linnet. The regiments in North America were supplied only after those in Europe and not necessarily with the best and most up to date equipment, so the musket could be old Army issue to the Provincial Marine. Identifying the uniform the button belonged to, whether Royal Navy, Royal Marine or Provincial Marine, may provide additional information about the manning of the ships on Lake Champlain. On the other hand, Linnet carried sailors and officers of varying ranks and nationalities, very likely with and without standard issue uniforms, so positive identification of the original uniform is unlikely. In summary, the small finds recovered during Linnet's excavation do not contribute a tremendous amount of information about this ship. While the artifact collection is limited, much more would have been learned had the wreck not been salvaged in 1949.
CHAPTER X

CONCLUSION

The story of the brig Linnet spans 185 years. It involves two countries, two states, a Canadian province, a rural New York community, and a nautical archaeology field school sponsored by universities in two states. The archaeological data, along with the archival information from Great Britain, Canada and the United States have allowed another chapter to be told of the War of 1812 on Lake Champlain. Linnet played an important part in that war - - as the first ship built during the ship-building race on Lake Champlain in 1813-1814 and as a participant in the Battle of Plattsburgh Bay. The brig sheds light on numerous aspects of the Royal Navy on the lake, and her story reflects many issues of the war for British North America, Lower Canada and Great Britain.

Despite the great damage done to the hull in 1949, as well as the substantial number of artifacts that were removed, some interesting conclusions can be reached as a result of this study. First, the contract for Linnet was supposed to reflect the dimensions originally proposed by Pring, but the historical data shows the brig was 85 feet in length as opposed to the 100-plus feet that Pring had pushed for earlier in his contract negotiations. A longer vessel would have had at least one advantage -- Linnet's deck could have held more guns thus increasing the firepower. No documents were discovered explaining why the brig's dimensions were reduced and since there was
plenty of timber, the answer may lie within economics or time available. It could reflect the fact that the establishment at Isle aux Noix was forced to purchase local iron work for the hull when the government failed to provide it and this used more of the budget for the brig’s construction. Simons and his crew still had to be paid. More likely, however, Simons just found this a better size of vessel to design, build, launch and outfit under the circumstances. If Macdonough had not chosen to match the Royal Navy’s efforts, then Linnet’s 85-foot hull and sixteen 12-pounder cannon would have easily ruled the lake in 1814.

The vessel’s shape provides some of the useful new information to come from this study. The hypothetical lines, based on a combination of archaeological data and the 1815 Admiralty draft, reflect a beamy vessel, with little deadrise, and nearly flat floors. The straight stem and stern post are hypothesized based on those in the 1815 draft. The lack of financial resources and military hardware in Lower Canada during the war, the lack of ironwork for shipbuilding at the time Linnet was constructed, and the physical limitations that Simons was dealing with in terms of the Richelieu’s depth, can all be seen in the brig’s shape and construction. The brig received favorable comments on its characteristics over the years, implying that Linnet probably handled well or was at least what naval officers looked for in a ship. The well constructed hull also represents the degree of importance attached to the brig’s creation as well as the shipwright’s skills. Linnet was, after all, intended to guarantee the British naval superiority, and a chance for the Royal Navy to flex its muscle on Lake Champlain.
Comparing Linnet’s hull to the 1815 Admiralty draft can also tell us something about the ship the Royal Navy wanted on Lake Champlain after the war was over. The Admiralty probably used information about Linnet’s performance to design the new 1815 vessel. Linnet was slightly flatter-floored. This probably represents the fact that the brig had to pass through shallow water and carry a heavy load of sixteen long 12-pounders. The 1815 plan, which shows a ship intending to carry ten 24-pounders, was also flat-floored and proves shallow water was an important factor in hull design. The 1815 plan suggests that Linnet’s design was good for sailing, cheap and easy to build with a shallow enough draft to allow navigation on much of the lake. The 1815 draft was similar in design, although slightly less beamy and with more deadrise. This suggests that Linnet’s basic design, with heavier guns, was thought to be good for the lake conditions in the post-war years.

Even the 1949 botched salvage effort, illegal and highly unethical by today’s standards, served a purpose. Not everyone at the time thought that the salvage effort was a good idea, as at least one reporter complained about the “casual attitude towards these priceless boats.” Linnet and the other vessels in the Poultnay had an impact on the residents in and around Whitehall, New York. Folklore grew from their stories and although some information generated from the 1949 event was incorrect, it still created interest in local history. This is perhaps the most important aspect of Linnet’s story. The information that was generated gave amateur historians in the area something to work with, and local schoolchildren something to think about far into their adult lives,
which influenced career paths. The residents of Whitehall carried *Linnet*’s story into the 20th century.

For archaeologists and historians, the local impact on the brig’s history influenced interpretation and is another chapter of the story. This may not have been as readily or colorfully told had the vessels resting in the Poultnay River been dismantled by the government or totally ignored for 124 years. Although the archaeological and historical data provided many conclusions about the brig *Linnet* and Royal Navy during the War of 1812, they also generated more questions. The search for answers, such as the identification of the coxcomb and button, may solve these mysteries and fill in the pages of history - with the continuing story of the Lake Champlain region and the nations to its north and south.
NOTES

1. Public Record Office, ADM 1/5450, Court Martials. Hereafter, the Public Record Office will be cited as PRO.

2. PRO, FO 94/4, Treaty of Peace and Amity Between His Britannic Majesty and The United States of America.

4. Ibid., 73.

5. Ibid., 39-40.

7. Ibid., 1-41.

15. Dennis M. Lewis, British Naval Activity on Lake Champlain During the War of 1812 (Plattsburgh, NY, 1994), 2.

17. PRO, ADM 181/20, 181/22, Royal Navy Estimates 1812, 1813.

18. PRO, ADM 181/23, Royal Navy Estimates 1814.
19. PRO, CO 42/147, p. 5. 29 June 1812. Quebec. George Prevost to the Earl of Liverpool.

24. PRO, CO 42/146; 142/147; 142/148.

31. PRO, CO 42/146, pp. 40-44. 3 March 1812. Quebec. Prevost to Earl of Liverpool.

32. PRO, CO 42/146, pp. 197-202.

34. PRO, CO 42/146, pp. 197-202. 18 May 1812. Quebec. Prevost to Earl of Liverpool.

38. Ibid.

39. Ibid.

41. Ibid., 65.

42. PRO, CO 42/146, pp. 197-202. 18 May 1812. Quebec. Prevost to Earl of Liverpool.

44. Ibid., 122.

46. National Archives of Canada, RG8, vol. 1707, p. 47. Freer Papers. Hereafter, the National Archives of Canada will be cited as NAC.

47. PRO, CO 42/147, pp. 201-203. 16 November 1812. Downing Street to Prevost.

53. 29 August 1812. Benjamin Moore to Secretary of the Navy Hamilton. As in Dudley, *Naval War of 1812*, vol. 1, 296.

54. 26 October 1812. Macdonough to Secretary of the Navy Hamilton. As in Dudley, *Naval War of 1812*, vol. 1, 325-327.

57. PRO, CO 42/148, p. 3. 26 October 1812. Montreal. Prevost to Bathurst.

60. Hitsman, *Safeguarding Canada*, 95.

62. NAC, RG8, vol. 1222, p. 326. 5 May 1813. Bermuda. Sir John Warren to Prevost. Pring is referred to as Captain in most sources and throughout this manuscript although he did not receive his Captain’s commission until 1815. The title is used here as a courtesy because Pring was the captain of the vessels *Wasp* and *Linnet*. This maintains a consistency with other authors.

64. Hooper, *The Royal Navy Station*, 52.

66. NAC, RG8, C-729, Reel C-3243, 21 April 1813. “Plans Proposed for Raising a Marine Corps...” as quoted in Lewis, *British Naval Activity*, 4 - 5. Lewis states that the bonus was twenty dollars upon enlistment, but this is probably supposed to be twenty shillings instead.

70. PRO, CO 42/150, p. 208. 7 June 1813. Kingston. Prevost to Bathurst.

73. NAC, RG8, vol. 1170, p. 313. 17 July 1813. Kingston; RG8, vol. 1221, p. 95. 11 June 1813. Kingston. Prevost to De Rottenburg. The names *Shannon* and *Broke* may reflect naval pride in the recent defeat of the American frigate *Chesapeake* by Captain P.V. Broke in the R.N. frigate *Shannon*.

81. NAC, RG8, vol. 730, p. 152. "Number of Seamen Required for Manning the Flotilla Under Captain Pring."

89. PRO, CO 42/151, p. 110. 8 August 1813. Kingston. Prevost to Bathurst.

90. PRO, CO 42/151, p. 120. 3 August 1813. Aboard HMS *Broke*, Lake Champlain. Commander Thomas Everard, Captain HMS *Wasp*, to Prevost.

92. PRO, CO 42/151, p. 120. 3 August 1813. Aboard HMS *Broke*, Lake Champlain. Commander Thomas Everard, Captain HMS *Wasp*, to Prevost.

93. NAC, RG8, vol. 679, part 1, p. 341. 3 August 1813. Aboard HMS *Broke*. Everard to Prevost.

98. NAC, RG8, vol. 680, pp. 53-56. 11 September 1813. Montreal. Sheaffe to Prevost. The steamboat mentioned was the *Vermont I*, which was employed by the U.S. forces as a transport ship only - not as a warship.

122. PRO, WO 44/250, pp. 55 - 56. 22 January 1814. Admiralty to the Earl of Mulgrave.

124. Ibid.

126. Everest, The War of 1812, 149, 205. The 20-gun reference is erroneous and may reflect that ships often had more gunports than the number of guns carried.

129. Ibid.

137. Hooper, The Royal Navy Station, 62-63; Lewis, British Naval Activity, 18; Everest, The War of 1812, 149.

142. Ibid.

143. Ibid.

146. PRO, CO 42/159, p. 132. 7 February 1814. London. John Bainbridge and John Inglis. "Minute."

148. Ibid.

150. Ibid.

154. Hooper, The Royal Navy Station, 66; Syrett, et al., The Commissioned Sea Officers, 156. While the sources do not explain, Fisher replaced Pring probably because he was a more experienced and senior officer. Fisher received his Captain's appointment on February 19, 1814.

155. Lewis, British Naval Activity, 29.

156. Morgan, Sketches, 222-223.

157. Syrett et al., Commissioned Sea Officers, 131.
158. Ibid., 222-223.

159. NAC, RG8, vol. 1225, pp. 15-16. 11 June 1814. Prevost to Yeo.

166. Wood, Select British Documents, 411-412.

167. Ibid., 421.

169. Ibid.

171. Lewis, British Naval Activity, 26; Crisman, Eagle, 63.

176. Everest, The War of 1812, 205. This source erroneously lists the broadside in tons.

178. Lewis, British Naval Activity, 29.
179. PRO, CO 42/158, p. 204. 8 September 1814. Point au Fer. Aboard HMS *Confiance*. Downie to Prevost.

181. Wood, *Select British Documents*, 414; This procedure also cleaned out the gun bores. Crisman, Eagle, 67.

186. Crisman, Eagle, 70.

188. Crisman, Eagle, 70.

193. Crisman, Eagle, 70.

197. Crisman, Eagle, 79.

198. PRO, CO 42/158, pp. 214-222. 12 September 1814. Plattsburgh Bay. USS *Saratoga*. Pring to Yeo.

203. Ibid.

214. National Archives and Records Services, Washington, DC, RG 45, Entry D. p. 110. Inventory of the Armament and Stores of the Prize Brig *Linnet* captured on the 11th September 1814. Hereafter, the National Archives and Records Services will be cited as DNA.

215. DNA, RG 45, Entry 110. 8 April 1815. New York.
216. Crisman, Eagle, 79.

220. DNA, RG 45, Entry 125, Roll 40, no. 42.

221. DNA, RG 45, Entry 125, Roll 43, no. 38.

222. DNA, RG 45, Roll 43, no. 42.

223. DNA, RG 45, Entry 220, vol 1.

224. Ibid.

225. DNA, RG 45, Entry 125, Roll 64, no. 170.

227. The precise date of sinking is unknown.

235. Ibid.

238. Ibid.

239. "Many Visitors Attracted Here," (20 October 1949); Bill Galick, personal interview (Whitehall, NY, August 1995.)

240. Crisman, Eagle, 118.

241. Ibid.

242. Support for this project came from a U.S. Navy Legacy Grant administered by the Naval Historical Center, the Vermont Division for Historic Preservation, the University of Vermont, Texas A&M University, the Institute of Nautical Archaeology and the Lake Champlain Maritime Museum.

244. Identification was performed by Dr. Roy Whitmore, Professor Emeritus, the University of Vermont Forestry Department.

245. Crisman, Eagle, 216.

1860 (London, 1993), 182, 298. Although Colledge lists nine other Linnets in addition to the 1814 brig, none of these are possibilities for the model because they either post-date it or have the wrong dimensions. Colledge also describes Linnet as ex-Growler, but as Lyons states, this is most likely a different vessel in service in 1830.

250. DNA, RG 45, Entry 169. Register of U.S. Naval Vessels 1797-1814.

255. Although the measurements varied only slightly, Crisman recommended using the U.S. Navy's measurements for everything except the overall length, which the other two sources agree upon as 85 feet.

256. Crisman, Eagle, 216.

257. Crisman, Eagle, 235-239.

258. Ibid.

260. Adrian B. Caruana, British Artillery Ammunition 1780 (Bloomfield, Ontario, 1979), 1.

261. Crisman, Eagle, 240.

263. Crisman, Eagle, 240.

267. Ibid., 33-34.

268. Ibid., 36-50.

269. Ibid., 35.

270. Ibid., 40.

272. Luis Fenollosa Emilio, The Emilio Collection of Military Buttons (Salem, MA, 1911). As quoted by Genevieve Duguay, Parcs Canada archaeologist, personal communication (July 1997.)

274. Ibid.

276. Ibid.

279. Fowler, “Benedict Arnold’s Warships.”
REFERENCES

Documentary Sources
Feinberg Library, State University of New York at Plattsburgh, NY
George Freiligh Collection.
National Archives, Washington, DC
 Naval Records Collection of the Office of Naval Records and Library (Record
 Group 45).
National Archives of Canada, Ottawa, Ontario
 Record Group 8 and ADM 37.
National Maritime Museum, Greenwich, England
Public Record Office, Kew, England
 Admiralty Papers (Volumes 1, 106, 181).
 Colonial Office Papers (Volumes 42, 43).
 Foreign Office Papers (Volume 94).
 War Office Papers (Volume 44).
Whitehall Public Library Archives, Whitehall, NY

Printed Source Material
(February, 1960).

Barranco Jr., A. Peter; Lewis, Dennis M.; Crisman, Kevin J.; Cohn, Arthur B. and
Timothy D. Titus, Inventory of Naval and Military Vessels on Lake Champlain,
Lake George and the Upper Richelieu River, 1742-1836 (Unpublished, on file
in the New World Laboratory, Nautical Archaeology Program, Texas A&M
University, January 1998).

Bellico, Russell P., Sails and Steam in the Mountains: A Maritime and Military History
of Lake George and Lake Champlain (Fleischmanns, NY, Purple Mountain

Bredenberg, Oscar, The Battle of Plattsburgh Bay: The British Navy's View
(Plattsburgh, NY, Clinton County Historical Association, 1978).

Cisman, Kevin J. *The Jefferson: The History and Archaeology of an American Brig from the War of 1812* (Ann Arbor, University Microfilms, 1989).

Lewis, Dennis M., *British Naval Activity on Lake Champlain During the War of 1812* (Plattsburgh, NY, Clinton County Historical Association, 1994).

FIGURE 1. Map of Lower Canada and the United States showing the Hudson River, Lake Champlain, Richelieu River and St. Lawrence River waterways and other key points of interest mentioned in the text. (Drawing by Erika Washburn).
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Position</th>
<th>Born</th>
<th>Mustered</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Muckle</td>
<td>?</td>
<td>Gunner</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>Daniel Pring</td>
<td>?</td>
<td>Captain</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>William Hicks</td>
<td>?</td>
<td>Lieutenant</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>Charles Creswick</td>
<td>?</td>
<td>Lieutenant</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>George Fuite</td>
<td>17</td>
<td>Midshipmen</td>
<td>Liverpool</td>
<td>Kingston</td>
</tr>
<tr>
<td>A.G. Hemys</td>
<td>19</td>
<td>Midshipmen</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>George Patmore</td>
<td>?</td>
<td>Coxswain</td>
<td>?</td>
<td>Kingston</td>
</tr>
<tr>
<td>John Baptist</td>
<td>25</td>
<td>Ordinary</td>
<td>Malta</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Grover</td>
<td>22</td>
<td>Able</td>
<td>Lime</td>
<td>Quebec</td>
</tr>
<tr>
<td>George Brown</td>
<td>20</td>
<td>Able</td>
<td>Portsmouth</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Jarvis</td>
<td>46</td>
<td>Able</td>
<td>Dorsetshire</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Starke</td>
<td>19</td>
<td>Able</td>
<td>Scotland</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Roberts</td>
<td>19</td>
<td>Ordinary</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>Henry Noble</td>
<td>25</td>
<td>Ordinary</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>Robert Newman</td>
<td>39</td>
<td>Able</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Vane</td>
<td>28</td>
<td>Able</td>
<td>London</td>
<td>Quebec</td>
</tr>
<tr>
<td>John LaFlour</td>
<td>24</td>
<td>Able</td>
<td>Montreal SC</td>
<td>Quebec</td>
</tr>
<tr>
<td>William Morgan</td>
<td>32</td>
<td>Boatswain’s Mate</td>
<td>Milford</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Brown</td>
<td>36</td>
<td>Able</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>Thomas Cosgrove</td>
<td>56</td>
<td>Able</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>B. Morwick</td>
<td>24</td>
<td>Able</td>
<td>Orkneys</td>
<td>Quebec</td>
</tr>
<tr>
<td>John Smith</td>
<td>43</td>
<td>Able</td>
<td>Kingsburgh</td>
<td>Quebec</td>
</tr>
<tr>
<td>William King</td>
<td>23</td>
<td>Able</td>
<td>Devonshire</td>
<td>Quebec</td>
</tr>
<tr>
<td>Arnold Houghton</td>
<td>22</td>
<td>Midshipmen</td>
<td>Sussex</td>
<td>HMS Hincell?</td>
</tr>
<tr>
<td>John Martin</td>
<td>21</td>
<td>Able</td>
<td>Ireland</td>
<td>Quebec</td>
</tr>
<tr>
<td>Ch. Lubeck</td>
<td>25</td>
<td>Able</td>
<td>Finland</td>
<td>Quebec</td>
</tr>
<tr>
<td>Peter Barclay</td>
<td>36</td>
<td>Able</td>
<td>Gottenburgh</td>
<td>Quebec</td>
</tr>
<tr>
<td>Christopher Morgan</td>
<td>24</td>
<td>Able</td>
<td>Hamburgh</td>
<td>Quebec</td>
</tr>
<tr>
<td>Garret Murs</td>
<td>23</td>
<td>Able</td>
<td>Prussia</td>
<td>Quebec</td>
</tr>
<tr>
<td>Peter Williams</td>
<td>28</td>
<td>Able</td>
<td>Prussia</td>
<td>Quebec</td>
</tr>
<tr>
<td>Thomas Aire</td>
<td>21</td>
<td>Midshipmen</td>
<td>Scotland</td>
<td>HMS Hincell?</td>
</tr>
<tr>
<td>John Wright</td>
<td>29</td>
<td>Able</td>
<td>London</td>
<td>Quebec</td>
</tr>
<tr>
<td>Henry Guy</td>
<td>20</td>
<td>Clerk</td>
<td>Ireland</td>
<td>HMS Trincels?</td>
</tr>
<tr>
<td>James Walker</td>
<td>20</td>
<td>Ordinary</td>
<td>Canada</td>
<td>Quebec</td>
</tr>
</tbody>
</table>

FIGURE 7. _Linnet_’s sail plan. (Drawing by Erika Washburn).
Secret

Downing Street
3rd June, 1814

Sir,

I have already communicated to you in my dispatch of the 14th of April the intention of His Majesty's government to avail themselves of the favourable state of affairs in Europe, in order to reinforce the Army under your command. I have now to acquaint you with the arrangements which have been made in consequence, and to point out to you the views with which His Majesty's Government have made so considerable an augmentation of the Army in Canada.

The 2nd Battalion of the Royal Scots of the strength stated in the margin [768] sailed from Spithead on the 9th ultimo. directly for Quebec and was joined at Cork by the 97th Regiment destined to relieve the Nova Scotia Fencibles at Newfoundland; which latter will immediately proceed to Quebec.

The 6th and 82nd Regiments of the strength as per margin [6th - 980; 82 - 837] sailed from Bourdeaux on the 15th ultimo direct for Quebec. Orders have also been given for embarking at the same port, twelve of the most effective Regiments of the Army under the Duke of Wellington together with three Companies of Artillery on the same service.

This force, which (when joined by the detachments about to proceed from this Country) will not fail far short of ten thousand infantry, will proceed in three divisions to Quebec. The first of these divisions will be embarked immediately, the second a week after the first and the third as soon as the means of Transport are collected. The last division however will arrive at Quebec long before the close of the year.

Six other Regiments have also been detached from the Gironde and the Mediterranean, four of which are destined to be employed in a direct operation against the Enemy's coast, and the other two are intended as a reinforcement to Nova Scotia and New Brunswick; available (if circumstances appear to you to render it necessary) for the defence of Canada, or for the offensive operations on the frontier, to which your attention will be particularly directed. It is also in contemplation at a later period of the year to make a more serious attack on some part of the Coasts of the United States; and with this view a considerable force will be collected at Cork without delay. These operations will not fail to effect a powerful diversion in your favor.

The result of this arrangement, as far as you are immediately concerned, will be to place at your disposal the Royals, the Nova Scotia Fencibles, the 6th and the 82nd Regiments amounting to three thousand one hundred and twenty seven men; and to afford you in the course of the year a further reinforcement of ten thousand British Troops.

When this force shall have been placed under your command, His Majesty's Government conceive that the Canadas will not only be protected for the time against any attack which the enemy may have the means of making, but it will enable you to commence offensive operations on the Enemy's Frontier before the close of this
Campaign. At the same time it is by no means the intention of His Majesty’s Government to encourage such forward movements into the Interior of the American Territory as might commit the safety of the Force placed under your command. The object of your operations will be; first, to give immediate protection; secondly, to obtain if possible ultimate security to His Majesty’s Possessions in America.

The entire destruction of Sackets Harbour and the Naval Establishment on Lake Erie and Lake Champlain come under the first description.

The maintenance of Fort Niagara and so much of the adjacent Territory as may be deemed necessary: and the occupation of Detroit and the Michigan Country come under the second.

If our success shall enable us to terminate the war by the retention of the Fort of Niagara, and the restoration of Detroit and the whole of the Michigan Country to the Indians, the British Frontier will be materially improved. Should there be any advanced position on that part of our frontier which extends towards Lake Champlain, the occupation of which would materially tend to the Security of the Province, you will if you deem it expedient expel the Enemy from it, and occupy it by detachments of the Troops under your command, always however taking care not to expose His Majesty’s Forces to being cut off by too extended a line of advance.

If you should not consider it necessary to call to our assistance the two Regiments which are to proceed in the first instance to Halifax, Sir J. Sherbrooke will receive instructions to occupy as much of the District of Maine as will secure an uninterrupted intercourse between Halifax and Quebec.

In contemplation of the increased force which by this arrangement you will be under the necessity of maintaining in the Province directions have been given for shipping immediately for Quebec, provisions for ten thousand men for six months.

The Frigate which conveys this letter has also on board one hundred thousand pounds in Specie for the use of the Army under your command. An equal sum will also be embarked on board the Ship of War which may be appointed to convoy to Quebec the fleet which is expected to sail from this Country on the 10th or at the latest on the 15th instant.

I have the honour etc.,

Bathurst

FIGURE 8. Secret Letter. (From PRO, CO 43/23, pp. 296-301).
FIGURE 10. Battle of Plattsburgh Bay 2. "A Plan of the Situation of the British and United States Squadrons half an hour after the Confiance anchored," same as Fig. 4 except Chub "drifting between the lines with her colours struck," Finch "aground" and Preble "having cut and gone in shore." (After PRO, ADM 1/ 5450).
Head Quarters
Montreal 6th November
1814

My Lord

On my return from Montreal I met a Messenger bringing Your Lordship's dispatch No. 75 of the 22nd August. I read it with deep concern and was particularly sensible to that part of it which apprized me that the expectations of His Royal Highness the Prince Regent, and of the Country, would be seriously disappointed should I allow the present campaign to close without having undertaken any offensive Measure against the Enemy. Your Lordship is aware to what extent I have acted under that impression and how completely my views have been frustrated by the failure of our Naval Means in the very outset of my endeavours.

With whatever sorrow I may think of the unfortunate occurrences to which I allude, I consider them as light and trivial when compared to the disastrous results which I am solemnly persuaded would have ensued, had any consideration of personal glory, or any unreflecting disregard of the Safety of the Province or the honour of the army Entrusted to My charge, induced me to pursue those offensive operations by Land, (independent of the fleet) which it would appear by Your Lordship's dispatch were expected of me.

Such operations, My Lord, have been attempted before on the same ground. The history of our Country records that failure, And had they been undertaken again with double the force placed under my command they would issue in the discomfiture of His Majesty's arms, and in a defeat not more disastrous than inevitable. The Naval Superiority on Lake Ontario has bee acquired at too advanced a Period of the Year to be otherwise availing than for the relief of the Right Division of the arm on the Niagara frontier from the difficulties with which it was contending.

Vice Admiral Sir Alexander Cochrane having represented to me that unless 450 Rank and file of the 1st Battalion of Royal Marines detained in this Country for the service on the Lakes by Commodore Sir James Yeo were sent to Halifax before the Navigation of the St Lawrence closes, he apprehended serious inconvenience to the operations he was commanded to carry on, - And Commodore Sir James Yeo having declared that he could not take the Lake without the proportion of Marines he now has on board the Vessels of his Squadron, I have deemed it expedient to order the 1st Battalion of the 27th Reg't to be immediately embarked on board of transports for the purpose of proceeding to join the Vice Admiral at Halifax under the convoy of His Majesty's Ship Zealous, And I have selected Major General Power to accompany this reinforcement considering him the Most competent officer to succeed to Major General Ross - until His Majesty's Government shall think proper to send out another.
My Lord, having attained the eminence on which I now stand by unwearied exertions through the course of many Years to discharge faithfully My obligations to my King and Country without ever having been afraid or ashamed of doing my duty - And having always endeavoured to act a proper part with firmness and constancy, I confess that the purpose of Your Lordship’s last communication has produced an agony of mind indescribable.

Placed in a command not more unprecedented in extent than in difficulties, surrounded by embarrassments of which no local information possessed by Your Lordship can give a full idea since they arise fresh around me with each succeeding day, - and called upon to fulfill expectations inconsistent with the situation of the country, while at the same time I have had to contend with ancient prejudices, and false opinions long entertained, - I have firmly encountered all and conquered much; I have shrunk from no exertion personal or mental - And, now, tho’ distant from the scene where my conduct shall be judged - I rest on the full conviction that it will be viewed with fairness and candour, and will in the end be found to have conducted to the best interests of my country.

If in concluding this dispatch I have reverted to the Subject with which it commenced, I can only hope for Your Lordship’s forgiveness for what may perhaps be considered an intrusion, by craving your candid and particular attention to those circumstances to which I have been induced to take a retrospective view.

I have the honour to be
My Lord

Your Lordship’s
Most obedient humble servant
George Prevost

Right Honourable The Earl Bathurst

Defects of HM Late Sloop Linnet in Action with the
American Squadron on Lake Champlain 12th Sept 1814

Main stay
Main spring
Main Topmast
Main Topmast Spring
Main Braces and Lifts
Main Topsail
Main Topsail Halyards
Main 3 shrouds on Larboard side Lower Rigging
Main Topsail Bow lines and Bunt lines
Fore I shroud Starboard side
Fore Topmast Backstay
Fore Topmast Stay
Fore rig’s 3 Shrouds Starboard Side
Fore Topsail Braces and Bow lines
Fore Topsail Haulyards
Fore Jib and Fore Topmast Stays and Haulyards
Bobstays
Jib Guys
Gammoning of the Bowsprit

Shot away

App’d

his
James X Hashum
mark

Boatswain Mate

D Pring. Captain HM Late
Sloop Linnet

William Drew
Senr. Lt.

Endorsed: Boatswain’s defects.

FIGURE 15. *Linnet* on Vermont bank of Poultney River. (From New York State Archives, Albany, NY, Department of Public Works, Collection Series 17672, courtesy Craig Williams)

FIGURE 16. *Linnet*'s stern. (From New York State Archives, Albany, NY, Department of Public Works, Collection Series 17672, courtesy Craig Williams).
FIGURE 17. Linnet’s broken stern, 1949. (Whitehall Public Library Archives).
FIGURE 19. Port side floor timbers and first futtocks, 1949. (From New York State Archives, Albany, NY, Department of Public Works, Collection Series 17672, courtesy Craig Williams).
FIGURE 22. Mortar (ballast) recovered from Linnet's hull, 1949. (From New York State Archives, Albany, NY, Department of Public Works, Collection Series 17672, courtesy Craig Williams).
FIGURE 23. *Linnet*’s timbers under the Mount Hope shelter. (Photo by Steve Butler).

FIGURE 25. Close up of the wreck. Note deadwood, mast step, ceiling and futtocks remaining in 1949. (From New York State Archives, Albany, New York, Department of Public Works, Collection Series 17672, courtesy Craig Williams).
FIGURE 27. Wreck plan, Vermont Historic Site VTRU317. Note drawing is rectified; the twist has been taken out of the keel and keelson and the frames have been reseated. (Drawing by Erika Washburn).
FIGURE 28. *Linnet* Frames 1 through 9 under standard shallow water conditions. (Photo by Kevin Crisman).
FIGURE 29. Recording Linnet’s hull. (Photo by Pierre LaRocque).
FIGURE 30. *Linnet* site with access ramp. (Photo by Steve Butler).
FIGURE 31. Chock from port side futtock. (A) forward face (B) lower face. (Photo by Erika Washburn).
FIGURE 32 A, B. Stern deadwood removed for measurement. (Photos by Pierre LaRocque).
FIGURE 33. Cannon recovered from *Linet*'s hull in 1949. This 9-pounder (center) now rests just outside Fort Ticonderoga's main entrance in Ticonderoga, New York. (Photo by Erika Washburn).
FIGURE 34. Mortar recovered from *Linner*'s hull in 1949. This now rests within Fort Ticonderoga's main parade ground. (Photo by Erika Washburn).
FIGURE 35. Mount Hope timbers 1, 2, 3, 4, 13, 14. (Drawing by Erika Washburn).
FIGURE 36. Mount Hope timbers 6, 7, 9, 11, 15, 16.
FIGURE 37. Mount Hope timbers 17, 19, 21, 22.
FIGURE 38. Frame sections 1,3,5. (Drawing by Erika Washburn).
FIGURE 39. Frame sections 7, 9, 11.
FIGURE 40. Frame sections 13, 15, 17.
FIGURE 41. Frame sections 21 and 23.
FIGURE 42. Mast step port side, 1949. (From New York State Archives, Albany, NY, Department of Public Works, Collections Series 17672, courtesy Craig Williams).
FIGURE 43. Mast step on keelson, 1949. (From New York State Archives, Albany, New York, Department of Public Works, Collection Series 17672, courtesy Craig Williams).
FIGURE 44. Mast step with reconstructed view. Reconstruction not to scale. (Drawing by Scott Paden).
FIGURE 45. Plan of a brig to be built on Lake Champlain. (After Chapelle, History of the American Sailing Navy, 272).
Plan of a Brig recommended for the Flotilla upon Lake Champlain
Kingston Naval Yard, July 1815

FIGURE 47. Hypothetical lines for the brig *Linnet*. (Drawing by Erika Washburn).
FIGURE 48. Comparison of 1815 Admiralty body and archaeologically derived body shape for *Linnet*. (Drawing by Erika Washburn).
FIGURE 49. Gun flint. (Drawing by Erick Tichonuk).
FIGURE 50. Spikes. (Drawing by Erick Tichonuk).
FIGURE 51. Nails. (Drawing by Erick Tichonuk).
FIGURE 52. Bolt L01-037. (Drawing by Erick Tichonuk).
FIGURE 54. Shot. (Drawing by Erick Tichonuk).
FIGURE 55. Cockscrew. (Drawing by Erick Tichonuk).
FIGURE 56. Buttons. Note L01-066 is enlarged in lower view. (Drawing by Erick Tichonuk).
APPENDIX B

CATALOG OF ARTIFACTS FROM 1995 FIELD SEASON

The following is a descriptive catalog of all finds associated with the Linnet excavation in 1995. This includes a brief discussion of their dimensions, provenience on the hull, distinguishing characteristics, their condition and whether or not they were conserved. Note that references to the starboard side indicate features facing the Vermont bank, while references to the port side indicate features facing the New York bank of the Poultney River.

FASTENERS

L01-001 Iron Spike

- Length: 4-3/8 inches (11.4 cm)
- Width of shank: 5/16 inch (.8 cm) tapering to 1/8 inch (.3 cm)
- Condition: excellent, little pitting or oxidation
- Treatment: conserved

This is a rosehead spike, named for the concave head with the petal-like design. The head, 5/8 inch (1.6 cm) across, has a four petal design angling down leaving a little button on top. The shank, round in cross section, tapers to 1/8 inch (.3 cm) at the point.

Found: detached, starboard side, abaft of Frame 10 approximately 5 inches (12.7 cm) from the keelson and 2 inches (5.1 cm) from Frame 10

L01-002 Iron Spike

- Length: 10-1/4 inches (26.7 cm)
- Condition: Heavily corroded, bent
- Treatment: Redeposited

Wrought iron with a square head and shank and a chisel tip.

Found: During survey of Poultney River, on the New York bank, at approximate original location of Ticonderoga prior to its salvage in 1958.
L01-003 Iron Spike

Length: 8-3/4 inches (22 cm)
Condition: heavily rusted
Treatment: Redeposited

Wrought iron with square head and shank and a chisel tip.
Found: During survey of Poultney River, on the New York bank, at
approximate original location of Ticonderoga.

L01-004 Iron Plate

Length: 6-1/2 inches (16.5 cm)
Width: 1-5/8 inch (3.8 cm)
Thickness: 1/8 inch (.3 cm)
Condition: heavily corroded
Treatment: Redeposited

Iron plate, very heavily rusted, has two small holes in body and one large hole
in head.
Found: During Poultney River survey, lodged in New York bank.

L01-005 Iron Spike

Length: 6 inches (15.2 cm)
Width of shank: 1/2 inch (1.3 cm) tapering to 1/4 inch (.6 cm)
Condition: Good, more corrosion on upper half and head
Treatment: Conserved

Square head with 1/4 inch (.6 cm) depth, corroded and partly broken off, square
shank below head tapers from 1/2 inch (1.3 cm) to 1/4 inch (.6 cm) by 1/8
inch (.3 cm) at point. There is a 90 degree bend in the last inch.
Found: 1 inch (2.5 cm) below Timber L03-001 (plank on Vermont bank) 3 feet
11 inches (119.4 cm) forward on plank. Originally appeared to have
come from plank itself, with the bent end embedded in the wood, but
this is questionable due to the river bank condition and the sandy, clay
soil - the spike settled in the soil after excavating the plank rather than
remaining in the wood.
L01-006 Iron Spike Fragment (MODERN)

Found: On surface of (plank) Timber L03-001
Treatment: Determined to be modern and discarded.

L01-007 Iron Spike

Length: 2-7/8 inches (7.3 cm)
Width of shank: tapers to 3/16 inch (.5 cm)
Condition: lower half well preserved, upper half some rust and concretion
Treatment: Redeposited

Rectangular head, 5/16 by 5/8 inch (.8 by 1.6 cm) width, with heavy concretion on upper half, shank tapers to 3/16 inch (.5 cm).
Found: Along surface of Timber L03-001(plank on bank), may have originally been embedded in plank as evidence by the varying degree of corrosion on shank.

L01-009 Iron Nail

Length: 1-3/4 inches (4.5 cm)
Width of shank: 3/16 inch (.5 cm) tapering to 1/8 inch (.3 cm)
Condition: excellent
Treatment: Conserved

Rectangular headed iron nail with head width 1/4 inch (.6 cm) by 3/16 inch (.5 cm) thick
Found: Between Frames 2 and 3, Starboard side of keelson

L01-010 Iron Nail Fragment

Length: 1-1/8 inch (2.9 cm)
Width of shank: 3/16 (.5 cm) tapering to 1/8 inch (.3 cm)
Condition: good, head has been chipped off a little, minor corrosion, shank possibly broken off half way down length
Treatment: Redeposited

Rectangular head, 5/16 inch (.8 cm) by 3/16 inch (.5 cm)
Found: Dredged out between Starboard Frames 2 and 3, from under thick stuff and keelson
L01-012 Copper Alloy Nail

Length: 1-1/8 inch (2.9 cm)
Width of shank: 1/8 inch (.3 cm)
Condition: good, solid features
Treatment: Conserved

Square shank with 1-1/4 inch (3.2 cm) head, formed by 90 degree bend in the shank.
Found: Dredge bag between Starboard Frames 2 and 3.

L01-013 Iron Spike Fragment

Length: 2-1/4 inch (5.7 cm)
Width of shank: 1/4 inch (.6 cm)
Condition: Heavy oxidation, some pitting on head
Treatment: Redeposited

Roughly rectangular head of 5/8 inch (1.6 cm) width, resembling rosehead pattern, square shank with slight 8 degree bend in it
Found: Dredge bag between Starboard Frames 2 and 3

L01-014 Iron Spike

Length: 5 inches (12.7 cm)
Width of shank: 3/8 inch (.9 cm) tapering to 5/16 inch (.8 cm)
Condition: Good/excellent
Treatment: Conserved

Rosehead, 3/8 inch (1 cm) thick, 3/4 inch (1.9 cm) wide, made from 3/8 inch (1 cm) square stock, there is a bend in shank 2-3/4 inch (7 cm) from head
Found: Upriver of keelson, starboard side of keel.

L01-015 Iron Spike

Length: 6 inches (15 cm)
Width of shank: ½ inch (1.3 cm) tapering to 7/16 inch (1.1 cm)
Condition: Good, minimal oxidation
Treatment: Conserved

Rosehead, head width 5/8 inch (1.6 cm) square, ½ inch s(1.3 cm) square shank tapering to 7/16 inch (1.1 cm).
Found: Eroding out of Vermont bank, abaft of L03-001 (plank).

L01-016 Iron Spike

Length: 3 ½ inch (8.9 cm)
Width of shank: varies due to heavy corrosion; 5/8 inch (1.6 cm) to 3/8 inch (1 cm)
Condition: Fair, heavily corroded
Treatment: Redeposited

Bend below shank 1-1/4 inch (3.2 cm) below the head, appears to be hand forged, heavily concreted on lower half
Found: 10 inches (25.4 cm) abaft of Frame 1 on top of the keel.

L01-017 Iron Nail

Length: 1-1/4 inch (3.2 cm)
Width of shank: 3/16 inch (.5 cm) tapering to 1/8 inch (.3 cm)
Condition: Fair
Treatment: Redeposited

Rectangular shank, square head 1/4 inch (.6 cm) by 1/4 inch (.6 cm).
Found: Dredge bag between starboard frames 3 and 4.

L01-018 Iron Nail

Length: 1-½ inch (3.8 cm)
Width of shank: tapers to 1/8 inch (.3 cm)
Condition: Fair, some corrosion
Treatment: Redeposited

Square head 1/4 inch (.6 cm) by 1/4 inch (.6 cm), shank broken off above the point.
Found: Dredge bag between starboard frames 3 and 4.

L01-019 Iron Nail Fragment

Length: 1-½ inch (3.8 cm)
Width of shank: 1/4 inch (.6 cm) tapering to 3/16 inch (.5 cm)
Condition: Poor, large amount of corrosion
Treatment: Redeposited
90 degree bend in shank, 1 3/16 inches (3 cm) from the end, possibly rectangular shank but heavily corroded.
Found: Dredge bag between starboard frames 4 and 5.

L01-020 Iron Nail

Length: 2-3/16 inch (5.6 cm)
Width of shank: 3/16 (.5 cm) tapering to 1/16 inch (.2 cm)
Condition: Excellent
Treatment: Conserved

Rectangular shank and head, width of head is 1/4 inch (.6 cm) by 1/8 inch (.3 cm).
Found: Dredge bag between starboard frames 4 and 5.

L01-023 Iron Spike Fragment

Length: 2-3/4 inch (7 cm)
Condition: Poor/ heavily corroded
Treatment: Redeposited

Possible ½ inch (1.3 cm) head but heavy corrosion deters proper measurement.
Found: Directly between starboard frames 5 and 6, 12 inches (30.5 cm) outboard from the keelson.

L01-027 Iron Nail Fragment

Length: 1-13/16 inch (4.6 cm)
Width of shank: square, 1/8 inch (.3 cm)
Condition: Good
Treatment: Redeposited

Head missing, straight shank.
Found: Dredge bag clean-up sweep, starboard frames 1 to 6.

L01-028 Iron Nail

Length: 1-3/8 inch (3.5 cm)
Width of shank: 3/16 inch (.5 cm) tapering to 1/8 inch (.3 cm)
Condition: Good solid shank, head is heavily corroded
Treatment: Redeposited
Rectangular head, 1/4 inch (.6 cm) wide, also rectangular shank.
Found: Between starboard frames 8 and 9, 3 inches (7.6 cm) forward of frame 8 and 6 inches (15 cm) outboard from the keel.

L01-029 Iron Nail Fragment

Length: 3/4 inch (1.9 cm)
Width of shank: 1/8 inch (.3 cm)
Condition: Fair, but missing most of shank
Treatment: Redeposited

Head 1/4 inch (.6 cm) width, end of nail broken off 3/4 inch (1.9 cm) from head.
Found: Between starboard frames 8 and 9; wedged in between hull planking, 4 inches (10 cm) from the keel and 4 inches (10 cm) abaft of frame 9.

L01-030 Iron Nail Fragment

Length: 1-7/16 inch (3.7 cm)
Width of shank: 1/4 inch (.6 cm) by 1/8 inch (.3 cm)
Condition: Good, minimal oxidation, clear features
Treatment: Redeposited

Rectangular head 3/8 inch (.9 cm) by 1/4 inch (.6 cm), rectangular shank 1/4 inch (.6 cm) by 1/8 inch (.3 cm).
Found: Dredge bag between starboard frames 8 and 9.

L01-031 Iron Spike

Length: 4½ inch (11.4 cm)
Width of shank: 1/3 inch (.7 cm)
Condition: Fair, slight corrosion, pointed end split apart
Treatment: Conserved

Flat square head, 5/8 inch (1.6 cm) diameter, square shank
Found: In exposed end of Timber L03-002.

3L01-032 Iron Spike

Length: 6 inch (15 cm)
Width of shank: 3/8 inch (1 cm)
Condition: Excellent
Treatment: Conserved
T Head, ½ inch (1.3 cm) diameter, square shank, 3/8 inch (1 cm) wide tapering to 1/4 inch (.6 cm) then flaring out to 3/8 inch (1 cm) again. At tip, 1/8 inch (.3 cm) thick; spike looks like it was never used. Found: Between starboard Frame 2 and hull planking, 18 inches (45.7 cm) outboard from keel.

L01-033 Iron Spike

Length: 4-1/4 inch (10.8 cm)
Width of shank: 5/16 inch (.8 cm) max and 1/8 inch (.3 cm) minimum
Condition: Fair, some oxidation, tip very eroded
Treatment: Re-deposited

Rectangular shank, head is rose head design, ½ inch (1.3 cm) square and badly eroded.

Found: Clean-up sweep, 4 inches (10 cm) upriver of starboard frame 2 and 5 inches (12.7 cm) outboard of keel.

L01-034 Iron Nail Fragment

Length: 2 inches (5 cm)
Width of shank: 1/4 inch (.6 cm)
Condition: Poor, corroded with head and tip missing
Treatment: Re-deposited

Missing head and point, shank is rectangular 1/4 inch (.6 cm) by 1/16 inch (.2 cm).

Found: Clean-up sweep, between starboard frame 2 and hull planking 5 inches (12.7 cm) outboard from keel.

L01-035 Iron Spike Fragment

Length: 3-1/4 inch (8.3 cm)
Width of shank: ½ inch (1.3 cm) pering to 1/4 inch (.6 cm)
Condition: Good, solid features, minimal oxidation
Treatment: Re-deposited

Square head, T-head, ½ inch (1.3 cm) thick, 3/4 inch (1.9 cm) by 3/4 inch (1.9 cm) wide.

Found: Between starboard frames 10 and 11, 3 inches (7.6 cm) forward of frame 10 and 18 inches (45.7 cm) outboard from keel.
L01-037 Iron Drift Bolt

Length: 8 inches (20 cm)
Diameter of shank: 3/4 inch (1.9 cm)
Diameter of head: 1-1/4 inch (3.2 cm)
Condition: Good
Treatment: Conserved

Shank is slightly bent and appears to have broken off near bottom.
Found: 3 inches (7.6 cm) forward of frame 10, 3 inches (7.6 cm) below L01-036, against hull planking.

L01-038 Iron Nail Fragment

Length: 3/4 inch (1.9 cm)
Width of shank: 1/8 inch (.3 cm) by 1/16 inch (.2 cm)
Condition: Poor, highly corroded
Treatment: Redeposited

Square head, 1/4 inch (.6 cm) by 1/4 inch (.6 cm), point missing.
Found: Against keel, 2 inches (5 cm) forward of starboard frame 10.

L01-042 Iron Spike

Length: 6-5/8 inches (16.8 cm)
Width of shank: 3/8 inch (1 cm)
Condition: Excellent
Treatment: Conserved

Rosehead; head 3/4 inch (1.9 cm) by 7/8 inch (2.2 cm) with visible striations, thickness of shank tapers to 1/8 inch (.3 cm), slight bend in shank, spatulated tip.
Found: Midway between starboard frames 12 and 13, 20 inches (50.8 cm) outboard from keel.

L01-043 Iron Spike Fragment

Length: 2-3/4 inches (7 cm)
Width: 3/8 inch (1 cm)
Condition: Fair, some heavy oxidation on head, end missing
Treatment: Redeposited
Head diameter 3/4 inch (1.9 cm), 12 degree bend in shank.
Found: Against after edge of starboard frame 13, 18 inches (45.7 cm) outboard from keel, against hull planking.

L01-044 Two Iron Nails

Length: A: 2-5/8 inch (6.7 cm), B: 2-5/8 inch (6.7 cm)
Width of shank: A and B: 1/8 inch (.3 cm)
Condition: Fair, minor corrosion
Treatment: Conserved

Identical nails, square heads, 1/4 inch (.6 cm) diameters, square shanks as well, points are eroded off.
Found: Between starboard frames 12 and 13.

L01-045 Iron Nail

Length: 2-½ inches (6.4 cm)
Width of shank: 1/4 inch (1.3 cm) square
Condition: Good
Treatment: Redeposited

Head is sheared off, tapers to a point at both ends.
Found: Between starboard frames 12 and 13.

L01-047 Iron Nail Fragment

Length: 1 inch (2.5 cm)
Width: 1/4 inch (1.3 cm) maximum
Condition: Poor, extremely corroded, most has eroded away
Treatment: Redeposited

Possibly from a spike, but s corroded and small impossible to tell.
Found: Unknown.

L01-048 Iron Spike and Three Iron Nail Fragments

Lengths -Spike: 4-7/8 inches (12.4 cm)
Nail 1: 2-7/16 inches (6.2 cm)
Nail 2: 2-1/4 inches (5.7 cm)
Nail 3: 1-1/16 inch (2.7 cm)

Widths (maximum) of shanks -
Spike: 3/8 inch (1 cm)
Nail 1: 3/16 inch (.5 cm)
Nail 2: 1/8 inch (.3 cm)
Nail 3: 3/16 inch (.5 cm)
Condition: Fair, some oxidation, heads of all four heavily corroded
Treatment: Conserved

Spike has 25 degree bend in shank and spatulated tip; Nail Fragment 1 has rectangular shank, 3/16 inch (1.3 cm) maximum width, 1/4 inch (.5 cm) head width; Nail Fragment 2 is missing the head, has slight bend in shank; Nail Fragment 3 rectangular shank and head, head 1/4 inch (1.3 cm) by 1/8 inch (.3 cm).
Found: Dredge bag between starboard frames 14 and 15.

L01-050 Iron Staple

Length: 1 7/16 inch (3.7 cm)
Width: 1 inch (2.5 cm)
Condition: Fair, minor corrosion
Treatment: Redeposited

U-shaped staple (possibly resembling roofing staple, flat on one end and pointed on the other, 5/16 inch (.8 cm) thick.
Found: In association with L01-049, midway between starboard frames 14 and 15, 12 inches (30.5 cm) outboard from keel.

L01-051 Iron Nail Fragment

Length: 1-1/4 inch (3.2 cm)
Width: 1/8 inch (.3 cm)
Condition: Good
Treatment: Redeposited

Square head, 3/8 inch (1 cm) wide, point missing.
Found: Between starboard frames 14 and 15, 12 inches (30.5 cm) outboard from keel.

L01-052 Iron Spike Fragment

Length: 2-1/2 inches (6.4 cm)
Width: 6/16 inch (1 cm)
Condition: Excellent
Treatment: Redeposited

Rosehead 5/8 inch (1.2 cm) square, shank is somewhat rounded mid-shank.
Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm)
outboard from keel.

L01-053 Iron Spike Fragment

Length: 3-1/4 inches (8.3 cm)
Width: ½ inch (1.3 cm)
Condition: Excellent
Treatment: Redeposited

Rosehead 5/8 inch (1.6 cm) square, square shank as well, clean break at mid-
shank.
Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm)
outboard from keel.

L01-055 Iron Spike Fragment

Length: 4 inches (10 cm)
Width: 3/8 inch (1 cm) tapering to 1/4 inch (.6 cm)
Condition: Fair, some localized corrosion
Treatment: Conserved

Rosehead ½ inch (1.3 cm) square and 1/4 inch (.6 cm) thick, square shank.
Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm)
outboard from keelson.

L01-056 Iron Nail and Copper Alloy Spike Fragments

Length: Nail 1: 13/16 inch (2.1 cm)
 Spike: ½ inch (1.3 cm)
 Nail 2: 1-½ inch (3.8 cm)
Width of shanks (maximum):
 Nail 1: 1/4 inch (.6 cm)
 Spike: 1/4 inch (.6 cm)
 Nail 2: 1/8 inch (.3 cm)
Condition: Good, minor localized corrosion
Treatment: Conserved
Nail 1 head 1/4 inch (.6 cm) by 3/16 inch (.5 cm), rectangular shank minimum thickness 1/16 inch (.2 cm); Copper Alloy Spike ½ inch (1.3 cm) by ½ (1.3 cm) inch, badly fragmented, spike is a guess as the identification of the original item; Nail 2 rectangular shank minimum thickness 1/16 inch (.2 cm), missing head and point.

Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm) outboard from keelson.

L01-058
Iron Nail Fragment

- Length: 3 inches (7.6 cm)
- Width: 1/8 inch (.3 cm)
- Condition: Fair
- Treatment: Conserved

Square 1/4 inch (.6 cm) head, rectangular shank, 1/16 inch (.2 cm) thick, slight bend in shank.

Found: Dredge bag between starboard frames 14 and 15.

L01-059
Iron Spike Fragment (MODERN)

- Treatment: Determined to be modern. Discarded.
- Found: Dredge bag between starboard frames 14 and 15.

L01-060
Iron Spike

- Length: 5-½ inches (14 cm)
- Width: 1/4 inch (.6 cm)
- Condition: Good
- Treatment: Conserved

Square ½ inch (1.3 cm) flat head, square shank ends in flat wedge point.

Found: At corner of keel and after edge of frame 15.

L01-062
Iron Nail Fragment

- Length: 1 inch (2.5 cm)
- Width of shank: 1/8 inch (.3 cm)
- Condition: Poor, heavy corrosion
- Treatment: Redeposited

1/4 inch (.6 cm) flat square head, square shank.
Found: Dredge bag between starboard frames 17 and 18.

L01-064 Iron Spike Fragment

Length: 3-1/8 inch (2.9 cm)
Width: 1/4 inch (.6 cm)
Condition: Good
Treatment: Conserved

Rosehead ½ inch (1.3 cm) (square, straight shank but end broken off.
Found: 4 inches (10 cm) forward of starboard frame 16, 12 inches (30.5 cm) outboard from keel.

L01-065 Iron Nail Fragment

Length: 15/16 inch (2.4 cm)
Width: 3/16 inch (.5 cm) (maximum)
Condition: Good
Treatment: Redeposited

Square 1/4 inch (.6 cm) head, shank is rectangular, resembles finishing nail.
Found: 4 inches (10 cm) forward of starboard frame 16, 12 inches (30.5 cm) outboard from keel.

L01-067 Iron Nail Fragment

Length: 13/16 inch (2.1 cm)
Width: 1/8 inch (.3 cm)
Condition: Poor
Treatment: Redeposited

Found: 4 inches (10 cm) forward of starboard frame 16, 12 inches (30.5 cm) outboard from keel.

L01-068 Iron Nail

Length: 1-3/4 inch (4.5 cm)
Width of shank (maximum): 1/8 inch (.3 cm)
Condition: Fair
Treatment: Redeposited

Rectangular head and shank, flat head 1/4 inch (.6 cm) by 1/8 inch (.3 cm).
Found: Adjacent to forward edge of starboard frame 16, 10 inches (25.4 cm) outboard from keel.

L01-069 Iron Nail Fragment

Length: 15/16 inch (2.4 cm)
Width: 15/16 inch (2.4 cm)
Condition: Poor
Treatment: Redeposited

Shank thickness 1/4 inch (.6 cm).
Found: 2 inches (5 cm) forward of starboard frame 16, 10 inches (25.4 cm) outboard from keel.

L01-070 Iron Spike Fragment

Length: 1-7/8 inch (4.8 cm)
Width of shank: 1/4 inch (.6 cm)
Condition: fair
Treatment: Redeposited

Head missing, shank slightly bent, thickness of 3/16 inch (.5 cm).
Found: 6 inches (15 cm) forward of starboard frame 16, 6 inches (15 cm)outboard from keel.

L01-071 Iron Spike Fragment

Length: 1 inch (2.5 cm)
Width: ¼ inch (1.3 cm)
Condition: Good
Treatment: Redeposited

1/4 inch (.6 cm) thick, slight curvature in shank, missing head, point and other diagnostic features.
Found: Dredge bag between starboard frames 20 and 21.

L01-072 Iron Spike

Length: 6-1/4 inch (16 cm)
Width: ¼ inch (1.3 cm)
Condition: Good, localized corrosion
Treatment: Conserved

Shank straight, thickness is minimum 1/8 inch (.3 cm) at point, rectangular head 3/4 inch (1.9 cm) by 7/8 inch (2.2 cm) wide, too corroded for diagnostic match.

Found: Under keelson between frames 6 and 7.

L01-073 Iron Spike Fragments

Length: A: 2-3/4 inch (7 cm)
 B: 2-7/8 inch (7.3 cm)
 C: 2-1/4 inch (5.7 cm)
 D: 1-5/8 inch (4 cm)

Width of shank (maximum)
 A: 3/8 inch (1 cm)
 B: 3/8 inch (1 cm)
 C: ?
 D: 1/4 inch (.6 cm)

Condition: Varies - minor localized corrosion on most

Treatment: Redeposited

A - rectangular shank, 1/8 inch (.3 cm) thick, missing head and point; B - more corroded shank, also missing head and point, slight bend at one end; C - head resembles rosehead pattern; D - head is rectangular 5/8 inch (1.6 cm) by 1/2 inch (1.3 cm), resembles rosehead pattern but quite corroded.

Found: Under keelson between frames 6 and 7.

ORDNANCE

L01-008 Lead Musket Ball

Diameter: .63 inch (1.6 cm)
Condition: Excellent
Treatment: Conserved

Sprue visible.
Found: Between starboard frames 2 and 3, 4 inches (10 cm) abaft frame 3, on the seam between hull planks 2 and 3.
L01-022 Lead Musket Ball

Diameter: .65 inches (1.6 cm)
Condition: Excellent
Treatment: Conserved

Sprue visible.
Found: Between starboard frames 5 and 6, 10 inches (25.4 cm) outboard from keel, 7 inches (18 cm) forward of frame 5.

L01-025 Iron Grape Shot

Diameter: 1-1/8 inch (2.9 cm)
Condition: Good, although covered with concretion
Treatment: Conserved

Found: Corner of starboard frame 6 and keelson.

L01-026 Lead Musket Ball

Diameter: 9/16 inch (1.4 cm)
Condition: Good
Treatment: Conserved

Found: Under keelson between frames 5 and 6.

L01-036 Iron Cockscrew

Length: 2 inches (5 cm)
Width: ½ inch (1.3 cm) at top, 1/4 inch (.6 cm) at bottom
Condition: Fair, some corrosion, few discernible features
Treatment: Conserved

Very few discernable features, no threads apparent.
Found: 3 inches (7.6 cm) forward of starboard frame 10, 18 inches (45.7 cm) outboard from keel.

L01-046 Lead Shot

Diameter: .30 inch (.76 cm)
Condition: Excellent
Treatment: Conserved
Possibly marked with Broad Arrow?
Found: Dredge bag between starboard frames 12 and 13.

L01-049 Iron Grapeshot and 5 Iron (Concretion) Fragments

Shot-
 Diameter: 1-3/16 inch (3 cm)
 Condition: Fair, corrosion all over
 Treatment: Conserved

Iron Fragments-
 These range in size from 3/4 inch (1.9 cm) by 15/16 inch (2.4 cm) to 1
 inch (2.5 cm) by 1 1/8 inch (2.8 cm); they vary in shape but are all
 concave; thicknesses vary from 3/32 inch (.2 cm) to 5/16 inch (.8 cm).
 They are in poor condition. These are hypothesized to be cannon ball
 concretions, due to their concave shapes or possibly concretions from
 ballast. These "concretions" were found in more than one location
 during dredging, but these samples were the only ones recorded. They
 appear to be flakes off a larger, round iron object. These were
 redeposited.

Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm)
 outboard from the keel.

L01-061 Iron Concretions (2)

Treatment: These were similar to L01-049 concretions, were not recorded and
 were redeposited.
Found: Dredge bag between starboard frames 14 and 15.

L01-076 Iron Canister Shot

Diameter:
Condition: Excellent
Treatment: Conserved

Found: Donated from B. Galick's private collection. This was found on board
 vessel in 1949 raising. This was kept in a coffee can in a dry
 environment for 47 years.
L01-077 Iron Grapeshot

Diameter:
Condition: Excellent
Treatment: Conserved

Found: Donated from B. Galick’s private collection, this was discovered on board vessel in 1949 raising. Also kept in coffee can, dry, for 47 years.

DRESS

L01-021 Copper Alloy Button Back

Length: 1/4 inch (.6 cm)
Width: 3/16 inch (.5 cm) at base
Diameter of loop hole: 1/8 inch (.3 cm) exterior, 1/16 inch (.2 cm) interior
Condition: Excellent
Treatment: Conserved

Thread loop visible on base.
Found: Dredge bag between starboard frames 4 and 5.

L01-066 Copper Alloy Button

Diameter: ½ inch 1.3 cm)
Condition: Excellent
Treatment: Conserved

Anchor design on from to button, back with loop is intact.
Found: 4 inches (10 cm) forward of starboard frame 16, 12 inches (30.5 cm) outboard from keel in layer of sand and gravel.
UNIDENTIFIED METAL ARTIFACTS

L01-011 Lead Fragment

Dimensions: 5/8 inch wide (1.6 cm)
 3/8 inch thick (1 cm)
Condition: Good
Treatment: Conserved

This has irregular shape, was hypothesized to be for melting into shot.
Found: Dredge bag between starboard frames 2 and 3.

L01-024 Iron Fragment

Treatment: Redeposited
Found: Between starboard frames 5 and 6.

L01-039 Iron Fragment

Length: 1.26 inches (3.2 cm)
Width of shank: .18 inches (.5 cm) (maximum)
Condition: Poor, badly eroded
Treatment: Redeposited

Probably round originally but the corrosion is so thick, it is difficult to tell,
possibly part of iron cable.
Found: Dredge bad between starboard frames 10 and 11.

L01-040 Iron Encrustation (2)

Dimensions: Varies, 7/8 inch (2.2 cm) by 1/4 inch (.6 cm) to 1 1/3 inch (3.3 cm)
 by 3/4 inch (1.9 cm)
Thickness: 1/4 (.6 cm) to ½ inch (1.3 cm)
Condition: Poor
Treatment: Redeposited

These two pieces are similar to those found in L01-049; they are curved with the
concave side a black color and the convex side a brown color; it is
hypothesized that they are flaked off pieces from cannon or other shot,
they are also very fragile.
Found: Dredge bag between starboard frames 10 and 11.
L01-041 Copper Alloy Fragment, Cylindrical

Length: 3/8 inch (1 cm)
Diameter: 1/8 inch (.3 cm)
Condition: Good
Treatment: Conserved

Small cylindrical fragment, hollow??, it has two cut marks on end
Found: Dredge bag between starboard frames 10 and 11.

L01-054 Copper Alloy Fragment

Length: 1-1/4 inch (3.2 cm)
Width: 7/16 inch (1.1 cm)
Condition: Good, some blackening
Treatment: Redeposited

Square in cross section, twisted and broken at both ends, resembles spike shank.
Found: Midway between starboard frames 14 and 15, 12 inches (30.5 cm)
outboard from keel.

L01-057 Iron Fragment

Length: 3/4 inch (1.9 cm)
Width: ½ inch (1.3 cm)
Condition: Fair
Treatment: Redeposited

This is roughly cubical in shape.
Found: Dredge bag between starboard frames 14 and 15.

L01-063 Tin fragment (5 pieces) (MODERN)

Length overall: 6 1/4 inches (15.8 cm)
Width: 5/8 inch (1.6 cm)
Thickness: 1/16 inch (.2 cm)
Condition: Fair
Treatment: Discarded

Determined to be modern tin band possibly from can of some kind.
Found: Between starboard frames 17 and 18, 6 inches (15 cm) forward of frame
17, 18 inches (45.7 cm) outboard from keel.
STONE

L02-001 Gunflint

Size: 1 inch (2.5 cm) by 1-1/4 inch (3.2 cm)
Thickness: 3/8 inch (1 cm)
Condition: Good
Treatment: Conserved

Both sides appear well used.
Found: Dredge bag between starboard frames 2 and 3.

L02-002 Possible Whetstone

Treatment: Determined to be natural formation. Discarded
Found: Dredge bag between starboard frames 5 and 6.

L02-003 Possible Whetstone

Treatment: Conserved
Found: Dredge bag between starboard frames 14 and 15.

WOOD

L03-001 Plank

Overall Length: over 8 feet (2.4 + meters)
Overall Width: 10 inches average (25.4 cm)
Condition: Good, some decay
Treatment: Excavated, Photographed, Redeposited

Found: This was located on the Vermont bank, in close proximity to the rest of the hull; the forward most end of the plank ran out into the river and under some of the existing frames. It was detached at the after end and was excavated on shore. All features were recorded.
L03-002 Loose Timber (A and B)

Length Overall: 2 feet 4 inches (71 cm)
Width Overall: 4 inches (10 cm)
Condition: Fair, part buried is well preserved, exposed end dried and cracked
Treatment: Excavated, Photographed, Redeposited

This timber (and the splinter, B, that broke off from it) was found protruding from the Vermont bank, along the starboard side of the hull. It seems a little thick for planking and may be thick stuff. One side of the piece seems unfinished, the other has tool marks. There are two spikes holes, one containing a spike.

Found: Embedded in Vermont bank, approximately 100 feet (30.5 meters) forward of Linnet's hull, oriented in S/SE direction.

L03-003 Loose Timber

Length Overall: 30 inches (76.2 cm)
Width Overall: 5 3/4 inch (14.6 cm)
Condition: Fair, Exposed end has more deterioration
Treatment: Excavated, Photographed, Redeposited

Similar in dimensions to Timber L03-002 (hull planking or thick stuff; there were three 5-inch-long (12.7 cm) spikes in timber when excavated, two were bent as if the timber had been torn from frames; no evidence of rabbets or other fasteners, the timber also had some tool marks on one side.

Found: Embedded in Vermont side of river bank, approximately 100 feet (30.5 m) forward of main hull, with 7 inches (18 cm) exposed including one spike. The orientation was in a S/SW direction.

L03-004 Plank Fragment

Length Overall: 48 inches (122 cm)
Width Overall: 5-1/8 inch (13 cm)
Thickness: 2 (5 cm) to 4 inches (10 cm)
Condition: Poor, extremely deteriorated
Treatment: Redeposited

Poor shape made any features indiscernible, but there were two holes cut along
on edge.
Found: Next to starboard frame 20, on forward most edge.

L03-005 Wood Fragment

Length: 3 inches (7.6 cm)
Width: 2-5/8 inch (6.7 cm)
Thickness: 1-1/16 inch (2.7 cm)
Condition: Good, solid
Treatment: Redeposited

Slightly wedge shaped, could be from just about anything, no identifiable features.
Found: Dredge bag between starboard frames 20 and 21.

L03-006 Chock

Length: 1 foot, 11 inches (58 cm)
Width: 9 inches (22.9 cm)
Thickness: 5-1/8 inch (13 cm) tapering to 1/4 inch (.6 cm)
Condition: Excellent
Treatment: Wood sample taken, redeposited

This was discovered on the upper half of a futtock attached to frame 1, port side. The futtock’s upper most surface, although this was obviously compass timber, was bark and had a large dent in it. The chock was made to fit into the dent and cover up the bark section. It had tool marks on one side and on top and was clean sawn on the bottom. It had a hole near the end and was fastened to the futtock by a trenail and spike, both of which were still in place.

Treenail: Length: 5 inches (12.7 cm), Diameter: 7/8 inch (2.2 cm)
Spike: Length: 5-1/2 inch (14 cm), Width: 3/8 inch (1 cm) tapering to 1/8 inch (.3 cm)

The spike has a square shank and 5/8 inch (1.6 cm) rosehead with a thickness of 1/8 inch (.3 cm). The treenail has 8 sides and 4 sharply carved surfaces at the point.
LEATHER

L04-001 Modern Leather Strap

Overall Length: 12 inches (30.5 cm)
Overall Width: 1-5/8 inch (4 cm)
Condition: Poor
Treatment: Determined to post-date Linnet's sinking and discarded.

Found: Between starboard frames 19 and 20, next to keelson.

L04-004 Modern Leather Fragment

Treatment: Discarded
Found: 6 inches (15 cm) downriver from starboard frame 10, 6 inches (15 cm) outboard from keel.

BONE

L06-001 Bone Fragment

Overall Length: 1-1/4 inch (3.2 cm)
Width: 1/2 inch (1.3 cm) at joint, 1/4 inch (.6 cm) at shaft
Condition: Good, seems hard
Treatment: Photographed, Redeposited

Small, appears to be from rodent.
Found: Dredge bag between starboard frames 4 and 5.

L06-002 Large Bone

Treatment: Determined to be modern and discarded.
Found: Around port frame 23
CHARCOAL

L07-001 Piece of Charcoal (Non-contemporary)

Treatment: Determined to be modern and discarded.
VITA

Erika Lea Washburn
29284 C.R. 354
Lawton, MI 49065

Educational Background
Texas A&M University
Master of Arts
Anthropology
May 1998

Boston University
Bachelor of Arts
(1) Archaeology
(2) Biology with Specialization in Marine Science
January 1994